Add iOS support

This commit is contained in:
Anthony Green
2011-02-08 19:20:09 -05:00
58 changed files with 62748 additions and 55 deletions

500
.pc/ios/src/arm/ffi.c Normal file
View File

@@ -0,0 +1,500 @@
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1998, 2008 Red Hat, Inc.
ARM Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Forward declares. */
static int vfp_type_p (ffi_type *);
static void layout_vfp_args (ffi_cif *);
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments
The vfp_space parameter is the load area for VFP regs, the return
value is cif->vfp_used (word bitset of VFP regs used for passing
arguments). These are only used for the VFP hard-float ABI.
*/
int ffi_prep_args(char *stack, extended_cif *ecif, float *vfp_space)
{
register unsigned int i, vi = 0;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
*(void **) argp = ecif->rvalue;
argp += 4;
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++)
{
size_t z;
/* Allocated in VFP registers. */
if (ecif->cif->abi == FFI_VFP
&& vi < ecif->cif->vfp_nargs && vfp_type_p (*p_arg))
{
float* vfp_slot = vfp_space + ecif->cif->vfp_args[vi++];
if ((*p_arg)->type == FFI_TYPE_FLOAT)
*((float*)vfp_slot) = *((float*)*p_argv);
else if ((*p_arg)->type == FFI_TYPE_DOUBLE)
*((double*)vfp_slot) = *((double*)*p_argv);
else
memcpy(vfp_slot, *p_argv, (*p_arg)->size);
p_argv++;
continue;
}
/* Align if necessary */
if (((*p_arg)->alignment - 1) & (unsigned) argp) {
argp = (char *) ALIGN(argp, (*p_arg)->alignment);
}
if ((*p_arg)->type == FFI_TYPE_STRUCT)
argp = (char *) ALIGN(argp, 4);
z = (*p_arg)->size;
if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
memcpy(argp, *p_argv, (*p_arg)->size);
break;
default:
FFI_ASSERT(0);
}
}
else if (z == sizeof(int))
{
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
}
/* Indicate the VFP registers used. */
return ecif->cif->vfp_used;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
int type_code;
/* Round the stack up to a multiple of 8 bytes. This isn't needed
everywhere, but it is on some platforms, and it doesn't harm anything
when it isn't needed. */
cif->bytes = (cif->bytes + 7) & ~7;
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
cif->flags = (unsigned) FFI_TYPE_SINT64;
break;
case FFI_TYPE_STRUCT:
if (cif->abi == FFI_VFP
&& (type_code = vfp_type_p (cif->rtype)) != 0)
{
/* A Composite Type passed in VFP registers, either
FFI_TYPE_STRUCT_VFP_FLOAT or FFI_TYPE_STRUCT_VFP_DOUBLE. */
cif->flags = (unsigned) type_code;
}
else if (cif->rtype->size <= 4)
/* A Composite Type not larger than 4 bytes is returned in r0. */
cif->flags = (unsigned)FFI_TYPE_INT;
else
/* A Composite Type larger than 4 bytes, or whose size cannot
be determined statically ... is stored in memory at an
address passed [in r0]. */
cif->flags = (unsigned)FFI_TYPE_STRUCT;
break;
default:
cif->flags = FFI_TYPE_INT;
break;
}
/* Map out the register placements of VFP register args.
The VFP hard-float calling conventions are slightly more sophisticated than
the base calling conventions, so we do it here instead of in ffi_prep_args(). */
if (cif->abi == FFI_VFP)
layout_vfp_args (cif);
return FFI_OK;
}
/* Prototypes for assembly functions, in sysv.S */
extern void ffi_call_SYSV (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
extern void ffi_call_VFP (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
int small_struct = (cif->flags == FFI_TYPE_INT
&& cif->rtype->type == FFI_TYPE_STRUCT);
int vfp_struct = (cif->flags == FFI_TYPE_STRUCT_VFP_FLOAT
|| cif->flags == FFI_TYPE_STRUCT_VFP_DOUBLE);
ecif.cif = cif;
ecif.avalue = avalue;
unsigned int temp;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->flags == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else if (small_struct)
ecif.rvalue = &temp;
else if (vfp_struct)
{
/* Largest case is double x 4. */
ecif.rvalue = alloca(32);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
break;
case FFI_VFP:
ffi_call_VFP (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
break;
default:
FFI_ASSERT(0);
break;
}
if (small_struct)
memcpy (rvalue, &temp, cif->rtype->size);
else if (vfp_struct)
memcpy (rvalue, ecif.rvalue, cif->rtype->size);
}
/** private members **/
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif, float *vfp_stack);
void ffi_closure_SYSV (ffi_closure *);
void ffi_closure_VFP (ffi_closure *);
/* This function is jumped to by the trampoline */
unsigned int
ffi_closure_SYSV_inner (closure, respp, args, vfp_args)
ffi_closure *closure;
void **respp;
void *args;
void *vfp_args;
{
// our various things...
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will re-set RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif, vfp_args);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
return cif->flags;
}
/*@-exportheader@*/
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
void **avalue, ffi_cif *cif,
/* Used only under VFP hard-float ABI. */
float *vfp_stack)
/*@=exportheader@*/
{
register unsigned int i, vi = 0;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( cif->flags == FFI_TYPE_STRUCT ) {
*rvalue = *(void **) argp;
argp += 4;
}
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
size_t alignment;
if (cif->abi == FFI_VFP
&& vi < cif->vfp_nargs && vfp_type_p (*p_arg))
{
*p_argv++ = (void*)(vfp_stack + cif->vfp_args[vi++]);
continue;
}
alignment = (*p_arg)->alignment;
if (alignment < 4)
alignment = 4;
/* Align if necessary */
if ((alignment - 1) & (unsigned) argp) {
argp = (char *) ALIGN(argp, alignment);
}
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
p_argv++;
argp += z;
}
return;
}
/* How to make a trampoline. */
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
({ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
*(unsigned int*) &__tramp[0] = 0xe92d000f; /* stmfd sp!, {r0-r3} */ \
*(unsigned int*) &__tramp[4] = 0xe59f0000; /* ldr r0, [pc] */ \
*(unsigned int*) &__tramp[8] = 0xe59ff000; /* ldr pc, [pc] */ \
*(unsigned int*) &__tramp[12] = __ctx; \
*(unsigned int*) &__tramp[16] = __fun; \
__clear_cache((&__tramp[0]), (&__tramp[19])); \
})
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
void (*closure_func)(ffi_closure*) = NULL;
if (cif->abi == FFI_SYSV)
closure_func = &ffi_closure_SYSV;
else if (cif->abi == FFI_VFP)
closure_func = &ffi_closure_VFP;
else
FFI_ASSERT (0);
FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
closure_func, \
codeloc);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* Below are routines for VFP hard-float support. */
static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum)
{
switch (t->type)
{
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
*elt = (int) t->type;
*elnum = 1;
return 1;
case FFI_TYPE_STRUCT_VFP_FLOAT:
*elt = FFI_TYPE_FLOAT;
*elnum = t->size / sizeof (float);
return 1;
case FFI_TYPE_STRUCT_VFP_DOUBLE:
*elt = FFI_TYPE_DOUBLE;
*elnum = t->size / sizeof (double);
return 1;
case FFI_TYPE_STRUCT:;
{
int base_elt = 0, total_elnum = 0;
ffi_type **el = t->elements;
while (*el)
{
int el_elt = 0, el_elnum = 0;
if (! rec_vfp_type_p (*el, &el_elt, &el_elnum)
|| (base_elt && base_elt != el_elt)
|| total_elnum + el_elnum > 4)
return 0;
base_elt = el_elt;
total_elnum += el_elnum;
el++;
}
*elnum = total_elnum;
*elt = base_elt;
return 1;
}
default: ;
}
return 0;
}
static int vfp_type_p (ffi_type *t)
{
int elt, elnum;
if (rec_vfp_type_p (t, &elt, &elnum))
{
if (t->type == FFI_TYPE_STRUCT)
{
if (elnum == 1)
t->type = elt;
else
t->type = (elt == FFI_TYPE_FLOAT
? FFI_TYPE_STRUCT_VFP_FLOAT
: FFI_TYPE_STRUCT_VFP_DOUBLE);
}
return (int) t->type;
}
return 0;
}
static void place_vfp_arg (ffi_cif *cif, ffi_type *t)
{
int reg = cif->vfp_reg_free;
int nregs = t->size / sizeof (float);
int align = ((t->type == FFI_TYPE_STRUCT_VFP_FLOAT
|| t->type == FFI_TYPE_FLOAT) ? 1 : 2);
/* Align register number. */
if ((reg & 1) && align == 2)
reg++;
while (reg + nregs <= 16)
{
int s, new_used = 0;
for (s = reg; s < reg + nregs; s++)
{
new_used |= (1 << s);
if (cif->vfp_used & (1 << s))
{
reg += align;
goto next_reg;
}
}
/* Found regs to allocate. */
cif->vfp_used |= new_used;
cif->vfp_args[cif->vfp_nargs++] = reg;
/* Update vfp_reg_free. */
if (cif->vfp_used & (1 << cif->vfp_reg_free))
{
reg += nregs;
while (cif->vfp_used & (1 << reg))
reg += 1;
cif->vfp_reg_free = reg;
}
return;
next_reg: ;
}
}
static void layout_vfp_args (ffi_cif *cif)
{
int i;
/* Init VFP fields */
cif->vfp_used = 0;
cif->vfp_nargs = 0;
cif->vfp_reg_free = 0;
memset (cif->vfp_args, -1, 16); /* Init to -1. */
for (i = 0; i < cif->nargs; i++)
{
ffi_type *t = cif->arg_types[i];
if (vfp_type_p (t))
place_vfp_arg (cif, t);
}
}

View File

@@ -0,0 +1,65 @@
/* -----------------------------------------------------------------*-C-*-
ffitarget.h - Copyright (c) 1996-2003 Red Hat, Inc.
Copyright (c) 2010 CodeSourcery
Target configuration macros for ARM.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef LIBFFI_TARGET_H
#define LIBFFI_TARGET_H
#ifndef LIBFFI_ASM
typedef unsigned long ffi_arg;
typedef signed long ffi_sarg;
typedef enum ffi_abi {
FFI_FIRST_ABI = 0,
FFI_SYSV,
FFI_VFP,
FFI_LAST_ABI,
#ifdef __ARM_PCS_VFP
FFI_DEFAULT_ABI = FFI_VFP,
#else
FFI_DEFAULT_ABI = FFI_SYSV,
#endif
} ffi_abi;
#endif
#define FFI_EXTRA_CIF_FIELDS \
int vfp_used; \
short vfp_reg_free, vfp_nargs; \
signed char vfp_args[16] \
/* Internally used. */
#define FFI_TYPE_STRUCT_VFP_FLOAT (FFI_TYPE_LAST + 1)
#define FFI_TYPE_STRUCT_VFP_DOUBLE (FFI_TYPE_LAST + 2)
/* ---- Definitions for closures ----------------------------------------- */
#define FFI_CLOSURES 1
#define FFI_TRAMPOLINE_SIZE 20
#define FFI_NATIVE_RAW_API 0
#endif

466
.pc/ios/src/arm/sysv.S Normal file
View File

@@ -0,0 +1,466 @@
/* -----------------------------------------------------------------------
sysv.S - Copyright (c) 1998, 2008 Red Hat, Inc.
ARM Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#ifdef HAVE_MACHINE_ASM_H
#include <machine/asm.h>
#else
#ifdef __USER_LABEL_PREFIX__
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
/* Use the right prefix for global labels. */
#define CNAME(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
#else
#define CNAME(x) x
#endif
#define ENTRY(x) .globl CNAME(x); .type CNAME(x),%function; CNAME(x):
#endif
#ifdef __ELF__
#define LSYM(x) .x
#else
#define LSYM(x) x
#endif
/* We need a better way of testing for this, but for now, this is all
we can do. */
@ This selects the minimum architecture level required.
#define __ARM_ARCH__ 3
#if defined(__ARM_ARCH_4__) || defined(__ARM_ARCH_4T__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 4
#endif
#if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \
|| defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
|| defined(__ARM_ARCH_5TEJ__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 5
#endif
#if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
|| defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
|| defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) \
|| defined(__ARM_ARCH_6M__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 6
#endif
#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \
|| defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \
|| defined(__ARM_ARCH_7EM__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 7
#endif
#if __ARM_ARCH__ >= 5
# define call_reg(x) blx x
#elif defined (__ARM_ARCH_4T__)
# define call_reg(x) mov lr, pc ; bx x
# if defined(__thumb__) || defined(__THUMB_INTERWORK__)
# define __INTERWORKING__
# endif
#else
# define call_reg(x) mov lr, pc ; mov pc, x
#endif
/* Conditionally compile unwinder directives. */
#ifdef __ARM_EABI__
#define UNWIND
#else
#define UNWIND @
#endif
#if defined(__thumb__) && !defined(__THUMB_INTERWORK__)
.macro ARM_FUNC_START name
.text
.align 0
.thumb
.thumb_func
ENTRY(\name)
bx pc
nop
.arm
UNWIND .fnstart
/* A hook to tell gdb that we've switched to ARM mode. Also used to call
directly from other local arm routines. */
_L__\name:
.endm
#else
.macro ARM_FUNC_START name
.text
.align 0
.arm
ENTRY(\name)
UNWIND .fnstart
.endm
#endif
.macro RETLDM regs=, cond=, dirn=ia
#if defined (__INTERWORKING__)
.ifc "\regs",""
ldr\cond lr, [sp], #4
.else
ldm\cond\dirn sp!, {\regs, lr}
.endif
bx\cond lr
#else
.ifc "\regs",""
ldr\cond pc, [sp], #4
.else
ldm\cond\dirn sp!, {\regs, pc}
.endif
#endif
.endm
@ r0: fn
@ r1: &ecif
@ r2: cif->bytes
@ r3: fig->flags
@ sp+0: ecif.rvalue
@ This assumes we are using gas.
ARM_FUNC_START ffi_call_SYSV
@ Save registers
stmfd sp!, {r0-r3, fp, lr}
UNWIND .save {r0-r3, fp, lr}
mov fp, sp
UNWIND .setfp fp, sp
@ Make room for all of the new args.
sub sp, fp, r2
@ Place all of the ffi_prep_args in position
mov r0, sp
@ r1 already set
@ Call ffi_prep_args(stack, &ecif)
bl ffi_prep_args
@ move first 4 parameters in registers
ldmia sp, {r0-r3}
@ and adjust stack
sub lr, fp, sp @ cif->bytes == fp - sp
ldr ip, [fp] @ load fn() in advance
cmp lr, #16
movhs lr, #16
add sp, sp, lr
@ call (fn) (...)
call_reg(ip)
@ Remove the space we pushed for the args
mov sp, fp
@ Load r2 with the pointer to storage for the return value
ldr r2, [sp, #24]
@ Load r3 with the return type code
ldr r3, [sp, #12]
@ If the return value pointer is NULL, assume no return value.
cmp r2, #0
beq LSYM(Lepilogue)
@ return INT
cmp r3, #FFI_TYPE_INT
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
cmpne r3, #FFI_TYPE_FLOAT
#endif
streq r0, [r2]
beq LSYM(Lepilogue)
@ return INT64
cmp r3, #FFI_TYPE_SINT64
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
cmpne r3, #FFI_TYPE_DOUBLE
#endif
stmeqia r2, {r0, r1}
#if !defined(__SOFTFP__) && !defined(__ARM_EABI__)
beq LSYM(Lepilogue)
@ return FLOAT
cmp r3, #FFI_TYPE_FLOAT
stfeqs f0, [r2]
beq LSYM(Lepilogue)
@ return DOUBLE or LONGDOUBLE
cmp r3, #FFI_TYPE_DOUBLE
stfeqd f0, [r2]
#endif
LSYM(Lepilogue):
RETLDM "r0-r3,fp"
.ffi_call_SYSV_end:
UNWIND .fnend
.size CNAME(ffi_call_SYSV),.ffi_call_SYSV_end-CNAME(ffi_call_SYSV)
/*
unsigned int FFI_HIDDEN
ffi_closure_SYSV_inner (closure, respp, args)
ffi_closure *closure;
void **respp;
void *args;
*/
ARM_FUNC_START ffi_closure_SYSV
UNWIND .pad #16
add ip, sp, #16
stmfd sp!, {ip, lr}
UNWIND .save {r0, lr}
add r2, sp, #8
UNWIND .pad #16
sub sp, sp, #16
str sp, [sp, #8]
add r1, sp, #8
bl ffi_closure_SYSV_inner
cmp r0, #FFI_TYPE_INT
beq .Lretint
cmp r0, #FFI_TYPE_FLOAT
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
beq .Lretint
#else
beq .Lretfloat
#endif
cmp r0, #FFI_TYPE_DOUBLE
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
beq .Lretlonglong
#else
beq .Lretdouble
#endif
cmp r0, #FFI_TYPE_LONGDOUBLE
#if defined(__SOFTFP__) || defined(__ARM_EABI__)
beq .Lretlonglong
#else
beq .Lretlongdouble
#endif
cmp r0, #FFI_TYPE_SINT64
beq .Lretlonglong
.Lclosure_epilogue:
add sp, sp, #16
ldmfd sp, {sp, pc}
.Lretint:
ldr r0, [sp]
b .Lclosure_epilogue
.Lretlonglong:
ldr r0, [sp]
ldr r1, [sp, #4]
b .Lclosure_epilogue
#if !defined(__SOFTFP__) && !defined(__ARM_EABI__)
.Lretfloat:
ldfs f0, [sp]
b .Lclosure_epilogue
.Lretdouble:
ldfd f0, [sp]
b .Lclosure_epilogue
.Lretlongdouble:
ldfd f0, [sp]
b .Lclosure_epilogue
#endif
.ffi_closure_SYSV_end:
UNWIND .fnend
.size CNAME(ffi_closure_SYSV),.ffi_closure_SYSV_end-CNAME(ffi_closure_SYSV)
/* Below are VFP hard-float ABI call and closure implementations.
Add VFP FPU directive here. */
.fpu vfp
@ r0: fn
@ r1: &ecif
@ r2: cif->bytes
@ r3: fig->flags
@ sp+0: ecif.rvalue
ARM_FUNC_START ffi_call_VFP
@ Save registers
stmfd sp!, {r0-r3, fp, lr}
UNWIND .save {r0-r3, fp, lr}
mov fp, sp
UNWIND .setfp fp, sp
@ Make room for all of the new args.
sub sp, sp, r2
@ Make room for loading VFP args
sub sp, sp, #64
@ Place all of the ffi_prep_args in position
mov r0, sp
@ r1 already set
sub r2, fp, #64 @ VFP scratch space
@ Call ffi_prep_args(stack, &ecif, vfp_space)
bl ffi_prep_args
@ Load VFP register args if needed
cmp r0, #0
beq LSYM(Lbase_args)
@ Load only d0 if possible
cmp r0, #3
sub ip, fp, #64
flddle d0, [ip]
fldmiadgt ip, {d0-d7}
LSYM(Lbase_args):
@ move first 4 parameters in registers
ldmia sp, {r0-r3}
@ and adjust stack
sub lr, ip, sp @ cif->bytes == (fp - 64) - sp
ldr ip, [fp] @ load fn() in advance
cmp lr, #16
movhs lr, #16
add sp, sp, lr
@ call (fn) (...)
call_reg(ip)
@ Remove the space we pushed for the args
mov sp, fp
@ Load r2 with the pointer to storage for
@ the return value
ldr r2, [sp, #24]
@ Load r3 with the return type code
ldr r3, [sp, #12]
@ If the return value pointer is NULL,
@ assume no return value.
cmp r2, #0
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_INT
streq r0, [r2]
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_SINT64
stmeqia r2, {r0, r1}
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_FLOAT
fstseq s0, [r2]
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_DOUBLE
fstdeq d0, [r2]
beq LSYM(Lepilogue_vfp)
cmp r3, #FFI_TYPE_STRUCT_VFP_FLOAT
cmpne r3, #FFI_TYPE_STRUCT_VFP_DOUBLE
fstmiadeq r2, {d0-d3}
LSYM(Lepilogue_vfp):
RETLDM "r0-r3,fp"
.ffi_call_VFP_end:
UNWIND .fnend
.size CNAME(ffi_call_VFP),.ffi_call_VFP_end-CNAME(ffi_call_VFP)
ARM_FUNC_START ffi_closure_VFP
fstmfdd sp!, {d0-d7}
@ r0-r3, then d0-d7
UNWIND .pad #80
add ip, sp, #80
stmfd sp!, {ip, lr}
UNWIND .save {r0, lr}
add r2, sp, #72
add r3, sp, #8
UNWIND .pad #72
sub sp, sp, #72
str sp, [sp, #64]
add r1, sp, #64
bl ffi_closure_SYSV_inner
cmp r0, #FFI_TYPE_INT
beq .Lretint_vfp
cmp r0, #FFI_TYPE_FLOAT
beq .Lretfloat_vfp
cmp r0, #FFI_TYPE_DOUBLE
cmpne r0, #FFI_TYPE_LONGDOUBLE
beq .Lretdouble_vfp
cmp r0, #FFI_TYPE_SINT64
beq .Lretlonglong_vfp
cmp r0, #FFI_TYPE_STRUCT_VFP_FLOAT
beq .Lretfloat_struct_vfp
cmp r0, #FFI_TYPE_STRUCT_VFP_DOUBLE
beq .Lretdouble_struct_vfp
.Lclosure_epilogue_vfp:
add sp, sp, #72
ldmfd sp, {sp, pc}
.Lretfloat_vfp:
flds s0, [sp]
b .Lclosure_epilogue_vfp
.Lretdouble_vfp:
fldd d0, [sp]
b .Lclosure_epilogue_vfp
.Lretint_vfp:
ldr r0, [sp]
b .Lclosure_epilogue_vfp
.Lretlonglong_vfp:
ldmia sp, {r0, r1}
b .Lclosure_epilogue_vfp
.Lretfloat_struct_vfp:
fldmiad sp, {d0-d1}
b .Lclosure_epilogue_vfp
.Lretdouble_struct_vfp:
fldmiad sp, {d0-d3}
b .Lclosure_epilogue_vfp
.ffi_closure_VFP_end:
UNWIND .fnend
.size CNAME(ffi_closure_VFP),.ffi_closure_VFP_end-CNAME(ffi_closure_VFP)
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",%progbits
#endif

610
.pc/ios/src/closures.c Normal file
View File

@@ -0,0 +1,610 @@
/* -----------------------------------------------------------------------
closures.c - Copyright (c) 2007 Red Hat, Inc.
Copyright (C) 2007, 2009, 2010 Free Software Foundation, Inc
Code to allocate and deallocate memory for closures.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#if defined __linux__ && !defined _GNU_SOURCE
#define _GNU_SOURCE 1
#endif
#include <ffi.h>
#include <ffi_common.h>
#ifndef FFI_MMAP_EXEC_WRIT
# if __gnu_linux__
/* This macro indicates it may be forbidden to map anonymous memory
with both write and execute permission. Code compiled when this
option is defined will attempt to map such pages once, but if it
fails, it falls back to creating a temporary file in a writable and
executable filesystem and mapping pages from it into separate
locations in the virtual memory space, one location writable and
another executable. */
# define FFI_MMAP_EXEC_WRIT 1
# define HAVE_MNTENT 1
# endif
# if defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)
/* Windows systems may have Data Execution Protection (DEP) enabled,
which requires the use of VirtualMalloc/VirtualFree to alloc/free
executable memory. */
# define FFI_MMAP_EXEC_WRIT 1
# endif
#endif
#if FFI_MMAP_EXEC_WRIT && !defined FFI_MMAP_EXEC_SELINUX
# ifdef __linux__
/* When defined to 1 check for SELinux and if SELinux is active,
don't attempt PROT_EXEC|PROT_WRITE mapping at all, as that
might cause audit messages. */
# define FFI_MMAP_EXEC_SELINUX 1
# endif
#endif
#if FFI_CLOSURES
# if FFI_MMAP_EXEC_WRIT
#define USE_LOCKS 1
#define USE_DL_PREFIX 1
#ifdef __GNUC__
#ifndef USE_BUILTIN_FFS
#define USE_BUILTIN_FFS 1
#endif
#endif
/* We need to use mmap, not sbrk. */
#define HAVE_MORECORE 0
/* We could, in theory, support mremap, but it wouldn't buy us anything. */
#define HAVE_MREMAP 0
/* We have no use for this, so save some code and data. */
#define NO_MALLINFO 1
/* We need all allocations to be in regular segments, otherwise we
lose track of the corresponding code address. */
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
/* Don't allocate more than a page unless needed. */
#define DEFAULT_GRANULARITY ((size_t)malloc_getpagesize)
#if FFI_CLOSURE_TEST
/* Don't release single pages, to avoid a worst-case scenario of
continuously allocating and releasing single pages, but release
pairs of pages, which should do just as well given that allocations
are likely to be small. */
#define DEFAULT_TRIM_THRESHOLD ((size_t)malloc_getpagesize)
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include <string.h>
#include <stdio.h>
#if !defined(X86_WIN32) && !defined(X86_WIN64)
#ifdef HAVE_MNTENT
#include <mntent.h>
#endif /* HAVE_MNTENT */
#include <sys/param.h>
#include <pthread.h>
/* We don't want sys/mman.h to be included after we redefine mmap and
dlmunmap. */
#include <sys/mman.h>
#define LACKS_SYS_MMAN_H 1
#if FFI_MMAP_EXEC_SELINUX
#include <sys/statfs.h>
#include <stdlib.h>
static int selinux_enabled = -1;
static int
selinux_enabled_check (void)
{
struct statfs sfs;
FILE *f;
char *buf = NULL;
size_t len = 0;
if (statfs ("/selinux", &sfs) >= 0
&& (unsigned int) sfs.f_type == 0xf97cff8cU)
return 1;
f = fopen ("/proc/mounts", "r");
if (f == NULL)
return 0;
while (getline (&buf, &len, f) >= 0)
{
char *p = strchr (buf, ' ');
if (p == NULL)
break;
p = strchr (p + 1, ' ');
if (p == NULL)
break;
if (strncmp (p + 1, "selinuxfs ", 10) == 0)
{
free (buf);
fclose (f);
return 1;
}
}
free (buf);
fclose (f);
return 0;
}
#define is_selinux_enabled() (selinux_enabled >= 0 ? selinux_enabled \
: (selinux_enabled = selinux_enabled_check ()))
#else
#define is_selinux_enabled() 0
#endif /* !FFI_MMAP_EXEC_SELINUX */
#elif defined (__CYGWIN__)
#include <sys/mman.h>
/* Cygwin is Linux-like, but not quite that Linux-like. */
#define is_selinux_enabled() 0
#endif /* !defined(X86_WIN32) && !defined(X86_WIN64) */
/* Declare all functions defined in dlmalloc.c as static. */
static void *dlmalloc(size_t);
static void dlfree(void*);
static void *dlcalloc(size_t, size_t) MAYBE_UNUSED;
static void *dlrealloc(void *, size_t) MAYBE_UNUSED;
static void *dlmemalign(size_t, size_t) MAYBE_UNUSED;
static void *dlvalloc(size_t) MAYBE_UNUSED;
static int dlmallopt(int, int) MAYBE_UNUSED;
static size_t dlmalloc_footprint(void) MAYBE_UNUSED;
static size_t dlmalloc_max_footprint(void) MAYBE_UNUSED;
static void** dlindependent_calloc(size_t, size_t, void**) MAYBE_UNUSED;
static void** dlindependent_comalloc(size_t, size_t*, void**) MAYBE_UNUSED;
static void *dlpvalloc(size_t) MAYBE_UNUSED;
static int dlmalloc_trim(size_t) MAYBE_UNUSED;
static size_t dlmalloc_usable_size(void*) MAYBE_UNUSED;
static void dlmalloc_stats(void) MAYBE_UNUSED;
#if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__)
/* Use these for mmap and munmap within dlmalloc.c. */
static void *dlmmap(void *, size_t, int, int, int, off_t);
static int dlmunmap(void *, size_t);
#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) */
#define mmap dlmmap
#define munmap dlmunmap
#include "dlmalloc.c"
#undef mmap
#undef munmap
#if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__)
/* A mutex used to synchronize access to *exec* variables in this file. */
static pthread_mutex_t open_temp_exec_file_mutex = PTHREAD_MUTEX_INITIALIZER;
/* A file descriptor of a temporary file from which we'll map
executable pages. */
static int execfd = -1;
/* The amount of space already allocated from the temporary file. */
static size_t execsize = 0;
/* Open a temporary file name, and immediately unlink it. */
static int
open_temp_exec_file_name (char *name)
{
int fd = mkstemp (name);
if (fd != -1)
unlink (name);
return fd;
}
/* Open a temporary file in the named directory. */
static int
open_temp_exec_file_dir (const char *dir)
{
static const char suffix[] = "/ffiXXXXXX";
int lendir = strlen (dir);
char *tempname = __builtin_alloca (lendir + sizeof (suffix));
if (!tempname)
return -1;
memcpy (tempname, dir, lendir);
memcpy (tempname + lendir, suffix, sizeof (suffix));
return open_temp_exec_file_name (tempname);
}
/* Open a temporary file in the directory in the named environment
variable. */
static int
open_temp_exec_file_env (const char *envvar)
{
const char *value = getenv (envvar);
if (!value)
return -1;
return open_temp_exec_file_dir (value);
}
#ifdef HAVE_MNTENT
/* Open a temporary file in an executable and writable mount point
listed in the mounts file. Subsequent calls with the same mounts
keep searching for mount points in the same file. Providing NULL
as the mounts file closes the file. */
static int
open_temp_exec_file_mnt (const char *mounts)
{
static const char *last_mounts;
static FILE *last_mntent;
if (mounts != last_mounts)
{
if (last_mntent)
endmntent (last_mntent);
last_mounts = mounts;
if (mounts)
last_mntent = setmntent (mounts, "r");
else
last_mntent = NULL;
}
if (!last_mntent)
return -1;
for (;;)
{
int fd;
struct mntent mnt;
char buf[MAXPATHLEN * 3];
if (getmntent_r (last_mntent, &mnt, buf, sizeof (buf)) == NULL)
return -1;
if (hasmntopt (&mnt, "ro")
|| hasmntopt (&mnt, "noexec")
|| access (mnt.mnt_dir, W_OK))
continue;
fd = open_temp_exec_file_dir (mnt.mnt_dir);
if (fd != -1)
return fd;
}
}
#endif /* HAVE_MNTENT */
/* Instructions to look for a location to hold a temporary file that
can be mapped in for execution. */
static struct
{
int (*func)(const char *);
const char *arg;
int repeat;
} open_temp_exec_file_opts[] = {
{ open_temp_exec_file_env, "TMPDIR", 0 },
{ open_temp_exec_file_dir, "/tmp", 0 },
{ open_temp_exec_file_dir, "/var/tmp", 0 },
{ open_temp_exec_file_dir, "/dev/shm", 0 },
{ open_temp_exec_file_env, "HOME", 0 },
#ifdef HAVE_MNTENT
{ open_temp_exec_file_mnt, "/etc/mtab", 1 },
{ open_temp_exec_file_mnt, "/proc/mounts", 1 },
#endif /* HAVE_MNTENT */
};
/* Current index into open_temp_exec_file_opts. */
static int open_temp_exec_file_opts_idx = 0;
/* Reset a current multi-call func, then advances to the next entry.
If we're at the last, go back to the first and return nonzero,
otherwise return zero. */
static int
open_temp_exec_file_opts_next (void)
{
if (open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat)
open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func (NULL);
open_temp_exec_file_opts_idx++;
if (open_temp_exec_file_opts_idx
== (sizeof (open_temp_exec_file_opts)
/ sizeof (*open_temp_exec_file_opts)))
{
open_temp_exec_file_opts_idx = 0;
return 1;
}
return 0;
}
/* Return a file descriptor of a temporary zero-sized file in a
writable and exexutable filesystem. */
static int
open_temp_exec_file (void)
{
int fd;
do
{
fd = open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func
(open_temp_exec_file_opts[open_temp_exec_file_opts_idx].arg);
if (!open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat
|| fd == -1)
{
if (open_temp_exec_file_opts_next ())
break;
}
}
while (fd == -1);
return fd;
}
/* Map in a chunk of memory from the temporary exec file into separate
locations in the virtual memory address space, one writable and one
executable. Returns the address of the writable portion, after
storing an offset to the corresponding executable portion at the
last word of the requested chunk. */
static void *
dlmmap_locked (void *start, size_t length, int prot, int flags, off_t offset)
{
void *ptr;
if (execfd == -1)
{
open_temp_exec_file_opts_idx = 0;
retry_open:
execfd = open_temp_exec_file ();
if (execfd == -1)
return MFAIL;
}
offset = execsize;
if (ftruncate (execfd, offset + length))
return MFAIL;
flags &= ~(MAP_PRIVATE | MAP_ANONYMOUS);
flags |= MAP_SHARED;
ptr = mmap (NULL, length, (prot & ~PROT_WRITE) | PROT_EXEC,
flags, execfd, offset);
if (ptr == MFAIL)
{
if (!offset)
{
close (execfd);
goto retry_open;
}
ftruncate (execfd, offset);
return MFAIL;
}
else if (!offset
&& open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat)
open_temp_exec_file_opts_next ();
start = mmap (start, length, prot, flags, execfd, offset);
if (start == MFAIL)
{
munmap (ptr, length);
ftruncate (execfd, offset);
return start;
}
mmap_exec_offset ((char *)start, length) = (char*)ptr - (char*)start;
execsize += length;
return start;
}
/* Map in a writable and executable chunk of memory if possible.
Failing that, fall back to dlmmap_locked. */
static void *
dlmmap (void *start, size_t length, int prot,
int flags, int fd, off_t offset)
{
void *ptr;
assert (start == NULL && length % malloc_getpagesize == 0
&& prot == (PROT_READ | PROT_WRITE)
&& flags == (MAP_PRIVATE | MAP_ANONYMOUS)
&& fd == -1 && offset == 0);
#if FFI_CLOSURE_TEST
printf ("mapping in %zi\n", length);
#endif
if (execfd == -1 && !is_selinux_enabled ())
{
ptr = mmap (start, length, prot | PROT_EXEC, flags, fd, offset);
if (ptr != MFAIL || (errno != EPERM && errno != EACCES))
/* Cool, no need to mess with separate segments. */
return ptr;
/* If MREMAP_DUP is ever introduced and implemented, try mmap
with ((prot & ~PROT_WRITE) | PROT_EXEC) and mremap with
MREMAP_DUP and prot at this point. */
}
if (execsize == 0 || execfd == -1)
{
pthread_mutex_lock (&open_temp_exec_file_mutex);
ptr = dlmmap_locked (start, length, prot, flags, offset);
pthread_mutex_unlock (&open_temp_exec_file_mutex);
return ptr;
}
return dlmmap_locked (start, length, prot, flags, offset);
}
/* Release memory at the given address, as well as the corresponding
executable page if it's separate. */
static int
dlmunmap (void *start, size_t length)
{
/* We don't bother decreasing execsize or truncating the file, since
we can't quite tell whether we're unmapping the end of the file.
We don't expect frequent deallocation anyway. If we did, we
could locate pages in the file by writing to the pages being
deallocated and checking that the file contents change.
Yuck. */
msegmentptr seg = segment_holding (gm, start);
void *code;
#if FFI_CLOSURE_TEST
printf ("unmapping %zi\n", length);
#endif
if (seg && (code = add_segment_exec_offset (start, seg)) != start)
{
int ret = munmap (code, length);
if (ret)
return ret;
}
return munmap (start, length);
}
#if FFI_CLOSURE_FREE_CODE
/* Return segment holding given code address. */
static msegmentptr
segment_holding_code (mstate m, char* addr)
{
msegmentptr sp = &m->seg;
for (;;) {
if (addr >= add_segment_exec_offset (sp->base, sp)
&& addr < add_segment_exec_offset (sp->base, sp) + sp->size)
return sp;
if ((sp = sp->next) == 0)
return 0;
}
}
#endif
#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) */
/* Allocate a chunk of memory with the given size. Returns a pointer
to the writable address, and sets *CODE to the executable
corresponding virtual address. */
void *
ffi_closure_alloc (size_t size, void **code)
{
void *ptr;
if (!code)
return NULL;
ptr = dlmalloc (size);
if (ptr)
{
msegmentptr seg = segment_holding (gm, ptr);
*code = add_segment_exec_offset (ptr, seg);
}
return ptr;
}
/* Release a chunk of memory allocated with ffi_closure_alloc. If
FFI_CLOSURE_FREE_CODE is nonzero, the given address can be the
writable or the executable address given. Otherwise, only the
writable address can be provided here. */
void
ffi_closure_free (void *ptr)
{
#if FFI_CLOSURE_FREE_CODE
msegmentptr seg = segment_holding_code (gm, ptr);
if (seg)
ptr = sub_segment_exec_offset (ptr, seg);
#endif
dlfree (ptr);
}
#if FFI_CLOSURE_TEST
/* Do some internal sanity testing to make sure allocation and
deallocation of pages are working as intended. */
int main ()
{
void *p[3];
#define GET(idx, len) do { p[idx] = dlmalloc (len); printf ("allocated %zi for p[%i]\n", (len), (idx)); } while (0)
#define PUT(idx) do { printf ("freeing p[%i]\n", (idx)); dlfree (p[idx]); } while (0)
GET (0, malloc_getpagesize / 2);
GET (1, 2 * malloc_getpagesize - 64 * sizeof (void*));
PUT (1);
GET (1, 2 * malloc_getpagesize);
GET (2, malloc_getpagesize / 2);
PUT (1);
PUT (0);
PUT (2);
return 0;
}
#endif /* FFI_CLOSURE_TEST */
# else /* ! FFI_MMAP_EXEC_WRIT */
/* On many systems, memory returned by malloc is writable and
executable, so just use it. */
#include <stdlib.h>
void *
ffi_closure_alloc (size_t size, void **code)
{
if (!code)
return NULL;
return *code = malloc (size);
}
void
ffi_closure_free (void *ptr)
{
free (ptr);
}
# endif /* ! FFI_MMAP_EXEC_WRIT */
#endif /* FFI_CLOSURES */

59
.pc/ios/src/debug.c Normal file
View File

@@ -0,0 +1,59 @@
/* -----------------------------------------------------------------------
debug.c - Copyright (c) 1996 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdio.h>
/* General debugging routines */
void ffi_stop_here(void)
{
/* This function is only useful for debugging purposes.
Place a breakpoint on ffi_stop_here to be notified of
significant events. */
}
/* This function should only be called via the FFI_ASSERT() macro */
void ffi_assert(char *expr, char *file, int line)
{
fprintf(stderr, "ASSERTION FAILURE: %s at %s:%d\n", expr, file, line);
ffi_stop_here();
abort();
}
/* Perform a sanity check on an ffi_type structure */
void ffi_type_test(ffi_type *a, char *file, int line)
{
FFI_ASSERT_AT(a != NULL, file, line);
FFI_ASSERT_AT(a->type <= FFI_TYPE_LAST, file, line);
FFI_ASSERT_AT(a->type == FFI_TYPE_VOID || a->size > 0, file, line);
FFI_ASSERT_AT(a->type == FFI_TYPE_VOID || a->alignment > 0, file, line);
FFI_ASSERT_AT(a->type != FFI_TYPE_STRUCT || a->elements != NULL, file, line);
}

5161
.pc/ios/src/dlmalloc.c Normal file

File diff suppressed because it is too large Load Diff

356
.pc/ios/src/java_raw_api.c Normal file
View File

@@ -0,0 +1,356 @@
/* -----------------------------------------------------------------------
java_raw_api.c - Copyright (c) 1999, 2007, 2008 Red Hat, Inc.
Cloned from raw_api.c
Raw_api.c author: Kresten Krab Thorup <krab@gnu.org>
Java_raw_api.c author: Hans-J. Boehm <hboehm@hpl.hp.com>
$Id $
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* This defines a Java- and 64-bit specific variant of the raw API. */
/* It assumes that "raw" argument blocks look like Java stacks on a */
/* 64-bit machine. Arguments that can be stored in a single stack */
/* stack slots (longs, doubles) occupy 128 bits, but only the first */
/* 64 bits are actually used. */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#if !defined(NO_JAVA_RAW_API) && !defined(FFI_NO_RAW_API)
size_t
ffi_java_raw_size (ffi_cif *cif)
{
size_t result = 0;
int i;
ffi_type **at = cif->arg_types;
for (i = cif->nargs-1; i >= 0; i--, at++)
{
switch((*at) -> type) {
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
result += 2 * FFI_SIZEOF_JAVA_RAW;
break;
case FFI_TYPE_STRUCT:
/* No structure parameters in Java. */
abort();
default:
result += FFI_SIZEOF_JAVA_RAW;
}
}
return result;
}
void
ffi_java_raw_to_ptrarray (ffi_cif *cif, ffi_java_raw *raw, void **args)
{
unsigned i;
ffi_type **tp = cif->arg_types;
#if WORDS_BIGENDIAN
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
*args = (void*) ((char*)(raw++) + 3);
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
*args = (void*) ((char*)(raw++) + 2);
break;
#if FFI_SIZEOF_JAVA_RAW == 8
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
*args = (void *)raw;
raw += 2;
break;
#endif
case FFI_TYPE_POINTER:
*args = (void*) &(raw++)->ptr;
break;
default:
*args = raw;
raw +=
ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw);
}
}
#else /* WORDS_BIGENDIAN */
#if !PDP
/* then assume little endian */
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
#if FFI_SIZEOF_JAVA_RAW == 8
switch((*tp)->type) {
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
*args = (void*) raw;
raw += 2;
break;
default:
*args = (void*) raw++;
}
#else /* FFI_SIZEOF_JAVA_RAW != 8 */
*args = (void*) raw;
raw +=
ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw);
#endif /* FFI_SIZEOF_JAVA_RAW == 8 */
}
#else
#error "pdp endian not supported"
#endif /* ! PDP */
#endif /* WORDS_BIGENDIAN */
}
void
ffi_java_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_java_raw *raw)
{
unsigned i;
ffi_type **tp = cif->arg_types;
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
#if WORDS_BIGENDIAN
*(UINT32*)(raw++) = *(UINT8*) (*args);
#else
(raw++)->uint = *(UINT8*) (*args);
#endif
break;
case FFI_TYPE_SINT8:
#if WORDS_BIGENDIAN
*(SINT32*)(raw++) = *(SINT8*) (*args);
#else
(raw++)->sint = *(SINT8*) (*args);
#endif
break;
case FFI_TYPE_UINT16:
#if WORDS_BIGENDIAN
*(UINT32*)(raw++) = *(UINT16*) (*args);
#else
(raw++)->uint = *(UINT16*) (*args);
#endif
break;
case FFI_TYPE_SINT16:
#if WORDS_BIGENDIAN
*(SINT32*)(raw++) = *(SINT16*) (*args);
#else
(raw++)->sint = *(SINT16*) (*args);
#endif
break;
case FFI_TYPE_UINT32:
#if WORDS_BIGENDIAN
*(UINT32*)(raw++) = *(UINT32*) (*args);
#else
(raw++)->uint = *(UINT32*) (*args);
#endif
break;
case FFI_TYPE_SINT32:
#if WORDS_BIGENDIAN
*(SINT32*)(raw++) = *(SINT32*) (*args);
#else
(raw++)->sint = *(SINT32*) (*args);
#endif
break;
case FFI_TYPE_FLOAT:
(raw++)->flt = *(FLOAT32*) (*args);
break;
#if FFI_SIZEOF_JAVA_RAW == 8
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_DOUBLE:
raw->uint = *(UINT64*) (*args);
raw += 2;
break;
#endif
case FFI_TYPE_POINTER:
(raw++)->ptr = **(void***) args;
break;
default:
#if FFI_SIZEOF_JAVA_RAW == 8
FFI_ASSERT(0); /* Should have covered all cases */
#else
memcpy ((void*) raw->data, (void*)*args, (*tp)->size);
raw +=
ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw);
#endif
}
}
}
#if !FFI_NATIVE_RAW_API
static void
ffi_java_rvalue_to_raw (ffi_cif *cif, void *rvalue)
{
#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8
switch (cif->rtype->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT32:
*(UINT64 *)rvalue <<= 32;
break;
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
#if FFI_SIZEOF_JAVA_RAW == 4
case FFI_TYPE_POINTER:
#endif
*(SINT64 *)rvalue <<= 32;
break;
default:
break;
}
#endif
}
static void
ffi_java_raw_to_rvalue (ffi_cif *cif, void *rvalue)
{
#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8
switch (cif->rtype->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT32:
*(UINT64 *)rvalue >>= 32;
break;
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
*(SINT64 *)rvalue >>= 32;
break;
default:
break;
}
#endif
}
/* This is a generic definition of ffi_raw_call, to be used if the
* native system does not provide a machine-specific implementation.
* Having this, allows code to be written for the raw API, without
* the need for system-specific code to handle input in that format;
* these following couple of functions will handle the translation forth
* and back automatically. */
void ffi_java_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue,
ffi_java_raw *raw)
{
void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
ffi_java_raw_to_ptrarray (cif, raw, avalue);
ffi_call (cif, fn, rvalue, avalue);
ffi_java_rvalue_to_raw (cif, rvalue);
}
#if FFI_CLOSURES /* base system provides closures */
static void
ffi_java_translate_args (ffi_cif *cif, void *rvalue,
void **avalue, void *user_data)
{
ffi_java_raw *raw = (ffi_java_raw*)alloca (ffi_java_raw_size (cif));
ffi_raw_closure *cl = (ffi_raw_closure*)user_data;
ffi_java_ptrarray_to_raw (cif, avalue, raw);
(*cl->fun) (cif, rvalue, raw, cl->user_data);
ffi_java_raw_to_rvalue (cif, rvalue);
}
ffi_status
ffi_prep_java_raw_closure_loc (ffi_java_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*),
void *user_data,
void *codeloc)
{
ffi_status status;
status = ffi_prep_closure_loc ((ffi_closure*) cl,
cif,
&ffi_java_translate_args,
codeloc,
codeloc);
if (status == FFI_OK)
{
cl->fun = fun;
cl->user_data = user_data;
}
return status;
}
/* Again, here is the generic version of ffi_prep_raw_closure, which
* will install an intermediate "hub" for translation of arguments from
* the pointer-array format, to the raw format */
ffi_status
ffi_prep_java_raw_closure (ffi_java_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*),
void *user_data)
{
return ffi_prep_java_raw_closure_loc (cl, cif, fun, user_data, cl);
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NATIVE_RAW_API */
#endif /* !FFI_NO_RAW_API */

171
.pc/ios/src/prep_cif.c Normal file
View File

@@ -0,0 +1,171 @@
/* -----------------------------------------------------------------------
prep_cif.c - Copyright (c) 1996, 1998, 2007 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Round up to FFI_SIZEOF_ARG. */
#define STACK_ARG_SIZE(x) ALIGN(x, FFI_SIZEOF_ARG)
/* Perform machine independent initialization of aggregate type
specifications. */
static ffi_status initialize_aggregate(ffi_type *arg)
{
ffi_type **ptr;
FFI_ASSERT(arg != NULL);
FFI_ASSERT(arg->elements != NULL);
FFI_ASSERT(arg->size == 0);
FFI_ASSERT(arg->alignment == 0);
ptr = &(arg->elements[0]);
while ((*ptr) != NULL)
{
if (((*ptr)->size == 0) && (initialize_aggregate((*ptr)) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type */
FFI_ASSERT_VALID_TYPE(*ptr);
arg->size = ALIGN(arg->size, (*ptr)->alignment);
arg->size += (*ptr)->size;
arg->alignment = (arg->alignment > (*ptr)->alignment) ?
arg->alignment : (*ptr)->alignment;
ptr++;
}
/* Structure size includes tail padding. This is important for
structures that fit in one register on ABIs like the PowerPC64
Linux ABI that right justify small structs in a register.
It's also needed for nested structure layout, for example
struct A { long a; char b; }; struct B { struct A x; char y; };
should find y at an offset of 2*sizeof(long) and result in a
total size of 3*sizeof(long). */
arg->size = ALIGN (arg->size, arg->alignment);
if (arg->size == 0)
return FFI_BAD_TYPEDEF;
else
return FFI_OK;
}
#ifndef __CRIS__
/* The CRIS ABI specifies structure elements to have byte
alignment only, so it completely overrides this functions,
which assumes "natural" alignment and padding. */
/* Perform machine independent ffi_cif preparation, then call
machine dependent routine. */
ffi_status ffi_prep_cif(ffi_cif *cif, ffi_abi abi, unsigned int nargs,
ffi_type *rtype, ffi_type **atypes)
{
unsigned bytes = 0;
unsigned int i;
ffi_type **ptr;
FFI_ASSERT(cif != NULL);
FFI_ASSERT(abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI);
cif->abi = abi;
cif->arg_types = atypes;
cif->nargs = nargs;
cif->rtype = rtype;
cif->flags = 0;
/* Initialize the return type if necessary */
if ((cif->rtype->size == 0) && (initialize_aggregate(cif->rtype) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the return type */
FFI_ASSERT_VALID_TYPE(cif->rtype);
/* x86, x86-64 and s390 stack space allocation is handled in prep_machdep. */
#if !defined M68K && !defined X86_ANY && !defined S390 && !defined PA
/* Make space for the return structure pointer */
if (cif->rtype->type == FFI_TYPE_STRUCT
#ifdef SPARC
&& (cif->abi != FFI_V9 || cif->rtype->size > 32)
#endif
)
bytes = STACK_ARG_SIZE(sizeof(void*));
#endif
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
/* Initialize any uninitialized aggregate type definitions */
if (((*ptr)->size == 0) && (initialize_aggregate((*ptr)) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type, do this
check after the initialization. */
FFI_ASSERT_VALID_TYPE(*ptr);
#if !defined X86_ANY && !defined S390 && !defined PA
#ifdef SPARC
if (((*ptr)->type == FFI_TYPE_STRUCT
&& ((*ptr)->size > 16 || cif->abi != FFI_V9))
|| ((*ptr)->type == FFI_TYPE_LONGDOUBLE
&& cif->abi != FFI_V9))
bytes += sizeof(void*);
else
#endif
{
/* Add any padding if necessary */
if (((*ptr)->alignment - 1) & bytes)
bytes = ALIGN(bytes, (*ptr)->alignment);
bytes += STACK_ARG_SIZE((*ptr)->size);
}
#endif
}
cif->bytes = bytes;
/* Perform machine dependent cif processing */
return ffi_prep_cif_machdep(cif);
}
#endif /* not __CRIS__ */
#if FFI_CLOSURES
ffi_status
ffi_prep_closure (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data)
{
return ffi_prep_closure_loc (closure, cif, fun, user_data, closure);
}
#endif

254
.pc/ios/src/raw_api.c Normal file
View File

@@ -0,0 +1,254 @@
/* -----------------------------------------------------------------------
raw_api.c - Copyright (c) 1999, 2008 Red Hat, Inc.
Author: Kresten Krab Thorup <krab@gnu.org>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* This file defines generic functions for use with the raw api. */
#include <ffi.h>
#include <ffi_common.h>
#if !FFI_NO_RAW_API
size_t
ffi_raw_size (ffi_cif *cif)
{
size_t result = 0;
int i;
ffi_type **at = cif->arg_types;
for (i = cif->nargs-1; i >= 0; i--, at++)
{
#if !FFI_NO_STRUCTS
if ((*at)->type == FFI_TYPE_STRUCT)
result += ALIGN (sizeof (void*), FFI_SIZEOF_ARG);
else
#endif
result += ALIGN ((*at)->size, FFI_SIZEOF_ARG);
}
return result;
}
void
ffi_raw_to_ptrarray (ffi_cif *cif, ffi_raw *raw, void **args)
{
unsigned i;
ffi_type **tp = cif->arg_types;
#if WORDS_BIGENDIAN
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 1);
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 2);
break;
#if FFI_SIZEOF_ARG >= 4
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 4);
break;
#endif
#if !FFI_NO_STRUCTS
case FFI_TYPE_STRUCT:
*args = (raw++)->ptr;
break;
#endif
case FFI_TYPE_POINTER:
*args = (void*) &(raw++)->ptr;
break;
default:
*args = raw;
raw += ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
}
}
#else /* WORDS_BIGENDIAN */
#if !PDP
/* then assume little endian */
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
#if !FFI_NO_STRUCTS
if ((*tp)->type == FFI_TYPE_STRUCT)
{
*args = (raw++)->ptr;
}
else
#endif
{
*args = (void*) raw;
raw += ALIGN ((*tp)->size, sizeof (void*)) / sizeof (void*);
}
}
#else
#error "pdp endian not supported"
#endif /* ! PDP */
#endif /* WORDS_BIGENDIAN */
}
void
ffi_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_raw *raw)
{
unsigned i;
ffi_type **tp = cif->arg_types;
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
(raw++)->uint = *(UINT8*) (*args);
break;
case FFI_TYPE_SINT8:
(raw++)->sint = *(SINT8*) (*args);
break;
case FFI_TYPE_UINT16:
(raw++)->uint = *(UINT16*) (*args);
break;
case FFI_TYPE_SINT16:
(raw++)->sint = *(SINT16*) (*args);
break;
#if FFI_SIZEOF_ARG >= 4
case FFI_TYPE_UINT32:
(raw++)->uint = *(UINT32*) (*args);
break;
case FFI_TYPE_SINT32:
(raw++)->sint = *(SINT32*) (*args);
break;
#endif
#if !FFI_NO_STRUCTS
case FFI_TYPE_STRUCT:
(raw++)->ptr = *args;
break;
#endif
case FFI_TYPE_POINTER:
(raw++)->ptr = **(void***) args;
break;
default:
memcpy ((void*) raw->data, (void*)*args, (*tp)->size);
raw += ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
}
}
}
#if !FFI_NATIVE_RAW_API
/* This is a generic definition of ffi_raw_call, to be used if the
* native system does not provide a machine-specific implementation.
* Having this, allows code to be written for the raw API, without
* the need for system-specific code to handle input in that format;
* these following couple of functions will handle the translation forth
* and back automatically. */
void ffi_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *raw)
{
void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
ffi_raw_to_ptrarray (cif, raw, avalue);
ffi_call (cif, fn, rvalue, avalue);
}
#if FFI_CLOSURES /* base system provides closures */
static void
ffi_translate_args (ffi_cif *cif, void *rvalue,
void **avalue, void *user_data)
{
ffi_raw *raw = (ffi_raw*)alloca (ffi_raw_size (cif));
ffi_raw_closure *cl = (ffi_raw_closure*)user_data;
ffi_ptrarray_to_raw (cif, avalue, raw);
(*cl->fun) (cif, rvalue, raw, cl->user_data);
}
ffi_status
ffi_prep_raw_closure_loc (ffi_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data,
void *codeloc)
{
ffi_status status;
status = ffi_prep_closure_loc ((ffi_closure*) cl,
cif,
&ffi_translate_args,
codeloc,
codeloc);
if (status == FFI_OK)
{
cl->fun = fun;
cl->user_data = user_data;
}
return status;
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NATIVE_RAW_API */
#if FFI_CLOSURES
/* Again, here is the generic version of ffi_prep_raw_closure, which
* will install an intermediate "hub" for translation of arguments from
* the pointer-array format, to the raw format */
ffi_status
ffi_prep_raw_closure (ffi_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data)
{
return ffi_prep_raw_closure_loc (cl, cif, fun, user_data, cl);
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NO_RAW_API */

77
.pc/ios/src/types.c Normal file
View File

@@ -0,0 +1,77 @@
/* -----------------------------------------------------------------------
types.c - Copyright (c) 1996, 1998 Red Hat, Inc.
Predefined ffi_types needed by libffi.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* Hide the basic type definitions from the header file, so that we
can redefine them here as "const". */
#define LIBFFI_HIDE_BASIC_TYPES
#include <ffi.h>
#include <ffi_common.h>
/* Type definitions */
#define FFI_TYPEDEF(name, type, id) \
struct struct_align_##name { \
char c; \
type x; \
}; \
const ffi_type ffi_type_##name = { \
sizeof(type), \
offsetof(struct struct_align_##name, x), \
id, NULL \
}
/* Size and alignment are fake here. They must not be 0. */
const ffi_type ffi_type_void = {
1, 1, FFI_TYPE_VOID, NULL
};
FFI_TYPEDEF(uint8, UINT8, FFI_TYPE_UINT8);
FFI_TYPEDEF(sint8, SINT8, FFI_TYPE_SINT8);
FFI_TYPEDEF(uint16, UINT16, FFI_TYPE_UINT16);
FFI_TYPEDEF(sint16, SINT16, FFI_TYPE_SINT16);
FFI_TYPEDEF(uint32, UINT32, FFI_TYPE_UINT32);
FFI_TYPEDEF(sint32, SINT32, FFI_TYPE_SINT32);
FFI_TYPEDEF(uint64, UINT64, FFI_TYPE_UINT64);
FFI_TYPEDEF(sint64, SINT64, FFI_TYPE_SINT64);
FFI_TYPEDEF(pointer, void*, FFI_TYPE_POINTER);
FFI_TYPEDEF(float, float, FFI_TYPE_FLOAT);
FFI_TYPEDEF(double, double, FFI_TYPE_DOUBLE);
#ifdef __alpha__
/* Even if we're not configured to default to 128-bit long double,
maintain binary compatibility, as -mlong-double-128 can be used
at any time. */
/* Validate the hard-coded number below. */
# if defined(__LONG_DOUBLE_128__) && FFI_TYPE_LONGDOUBLE != 4
# error FFI_TYPE_LONGDOUBLE out of date
# endif
const ffi_type ffi_type_longdouble = { 16, 16, 4, NULL };
#elif FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
FFI_TYPEDEF(longdouble, long double, FFI_TYPE_LONGDOUBLE);
#endif