Add man files and info file. Update README. Tag as 2.99.3.

This commit is contained in:
green
2008-02-14 22:03:37 +00:00
parent f045a2367f
commit 1d1dc81104
15 changed files with 1397 additions and 255 deletions

View File

@@ -1,3 +1,20 @@
2008-02-14 Anthony Green <green@redhat.com>
* README: Update.
* libffi.info: New file.
* doc/stamp-vti: New file.
* configure.ac: Bump version to 2.99.3.
* configure: Rebuilt.
2008-02-14 Anthony Green <green@redhat.com>
* Makefile.am (SUBDIRS): Add man dir.
* Makefile.in: Rebuilt.
* configure.ac: Create Makefile.
* configure: Rebuilt.
* man/ffi_call.3 man/ffi_prep_cif.3 man/ffi_prep_closure.3
man/Makefile.am man/Makefile.in: New files.
2008-02-14 Tom Tromey <tromey@redhat.com>
* aclocal.m4, Makefile.in, configure, fficonfig.h.in: Rebuilt.

View File

@@ -2,7 +2,7 @@
AUTOMAKE_OPTIONS = foreign subdir-objects
SUBDIRS = include testsuite
SUBDIRS = include testsuite man
EXTRA_DIST = LICENSE ChangeLog.v1 ChangeLog.libgcj configure.host \
src/alpha/ffi.c src/alpha/osf.S src/alpha/ffitarget.h \

View File

@@ -60,7 +60,7 @@ subdir = .
DIST_COMMON = README $(am__configure_deps) $(srcdir)/Makefile.am \
$(srcdir)/Makefile.in $(srcdir)/doc/stamp-vti \
$(srcdir)/doc/version.texi $(srcdir)/fficonfig.h.in \
$(srcdir)/libffi.pc.in $(top_srcdir)/configure ChangeLog \
$(srcdir)/libffi.pc.in $(top_srcdir)/configure ChangeLog TODO \
compile config.guess config.sub depcomp install-sh ltcf-c.sh \
ltcf-cxx.sh ltcf-gcj.sh ltconfig ltmain.sh mdate-sh missing \
mkinstalldirs texinfo.tex
@@ -331,7 +331,7 @@ toolexeclibdir = @toolexeclibdir@
top_builddir = @top_builddir@
top_srcdir = @top_srcdir@
AUTOMAKE_OPTIONS = foreign subdir-objects
SUBDIRS = include testsuite
SUBDIRS = include testsuite man
EXTRA_DIST = LICENSE ChangeLog.v1 ChangeLog.libgcj configure.host \
src/alpha/ffi.c src/alpha/osf.S src/alpha/ffitarget.h \
src/arm/ffi.c src/arm/sysv.S src/arm/ffitarget.h \

View File

@@ -36,38 +36,21 @@ exist above libffi that handles type conversions for values passed
between the two languages.
Supported Platforms and Prerequisites
=====================================
Supported Platforms
===================
Libffi has been ported to:
SunOS 4.1.3 & Solaris 2.x (SPARC-V8, SPARC-V9)
Irix 5.3 & 6.2 (System V/o32 & n32)
Intel x86 - Linux (System V ABI)
Alpha - Linux and OSF/1
m68k - Linux (System V ABI)
PowerPC - Linux (System V ABI, Darwin, AIX)
ARM - Linux (System V ABI)
Libffi has been tested with the egcs 1.0.2 gcc compiler. Chances are
that other versions will work. Libffi has also been built and tested
with the SGI compiler tools.
On PowerPC, the tests failed (see the note below).
You must use GNU make to build libffi. SGI's make will not work.
Sun's probably won't either.
If you port libffi to another platform, please let me know! I assume
that some will be easy (x86 NetBSD), and others will be more difficult
(HP).
Libffi has been ported to many different platforms, although this
release was only tested on:
arm oabi linux
arm eabi linux
hppa64 linux
powerpc64 linux
sparc solaris (SPARC V9 ABI)
x86 cygwin
x86 linux
x86-64 linux
Installing libffi
=================
@@ -104,195 +87,6 @@ To ensure that libffi is working as advertised, type "make test".
To install the library and header files, type "make install".
Using libffi
============
The Basics
----------
Libffi assumes that you have a pointer to the function you wish to
call and that you know the number and types of arguments to pass it,
as well as the return type of the function.
The first thing you must do is create an ffi_cif object that matches
the signature of the function you wish to call. The `cif' in ffi_cif
stands for Call InterFace. To prepare a call interface object, use the
following function:
ffi_status ffi_prep_cif(ffi_cif *cif, ffi_abi abi,
unsigned int nargs,
ffi_type *rtype, ffi_type **atypes);
CIF is a pointer to the call interface object you wish
to initialize.
ABI is an enum that specifies the calling convention
to use for the call. FFI_DEFAULT_ABI defaults
to the system's native calling convention. Other
ABI's may be used with care. They are system
specific.
NARGS is the number of arguments this function accepts.
libffi does not yet support vararg functions.
RTYPE is a pointer to an ffi_type structure that represents
the return type of the function. Ffi_type objects
describe the types of values. libffi provides
ffi_type objects for many of the native C types:
signed int, unsigned int, signed char, unsigned char,
etc. There is also a pointer ffi_type object and
a void ffi_type. Use &ffi_type_void for functions that
don't return values.
ATYPES is a vector of ffi_type pointers. ARGS must be NARGS long.
If NARGS is 0, this is ignored.
ffi_prep_cif will return a status code that you are responsible
for checking. It will be one of the following:
FFI_OK - All is good.
FFI_BAD_TYPEDEF - One of the ffi_type objects that ffi_prep_cif
came across is bad.
Before making the call, the VALUES vector should be initialized
with pointers to the appropriate argument values.
To call the the function using the initialized ffi_cif, use the
ffi_call function:
void ffi_call(ffi_cif *cif, void *fn, void *rvalue, void **avalues);
CIF is a pointer to the ffi_cif initialized specifically
for this function.
FN is a pointer to the function you want to call.
RVALUE is a pointer to a chunk of memory that is to hold the
result of the function call. Currently, it must be
at least one word in size (except for the n32 version
under Irix 6.x, which must be a pointer to an 8 byte
aligned value (a long long). It must also be at least
word aligned (depending on the return type, and the
system's alignment requirements). If RTYPE is
&ffi_type_void, this is ignored. If RVALUE is NULL,
the return value is discarded.
AVALUES is a vector of void* that point to the memory locations
holding the argument values for a call.
If NARGS is 0, this is ignored.
If you are expecting a return value from FN it will have been stored
at RVALUE.
An Example
----------
Here is a trivial example that calls puts() a few times.
#include <stdio.h>
#include <ffi.h>
int main()
{
ffi_cif cif;
ffi_type *args[1];
void *values[1];
char *s;
int rc;
/* Initialize the argument info vectors */
args[0] = &ffi_type_pointer;
values[0] = &s;
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
&ffi_type_uint, args) == FFI_OK)
{
s = "Hello World!";
ffi_call(&cif, puts, &rc, values);
/* rc now holds the result of the call to puts */
/* values holds a pointer to the function's arg, so to
call puts() again all we need to do is change the
value of s */
s = "This is cool!";
ffi_call(&cif, puts, &rc, values);
}
return 0;
}
Aggregate Types
---------------
Although libffi has no special support for unions or bit-fields, it is
perfectly happy passing structures back and forth. You must first
describe the structure to libffi by creating a new ffi_type object
for it. Here is the definition of ffi_type:
typedef struct _ffi_type
{
unsigned size;
short alignment;
short type;
struct _ffi_type **elements;
} ffi_type;
All structures must have type set to FFI_TYPE_STRUCT. You may set
size and alignment to 0. These will be calculated and reset to the
appropriate values by ffi_prep_cif().
elements is a NULL terminated array of pointers to ffi_type objects
that describe the type of the structure elements. These may, in turn,
be structure elements.
The following example initializes a ffi_type object representing the
tm struct from Linux's time.h:
struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
/* Those are for future use. */
long int __tm_gmtoff__;
__const char *__tm_zone__;
};
{
ffi_type tm_type;
ffi_type *tm_type_elements[12];
int i;
tm_type.size = tm_type.alignment = 0;
tm_type.elements = &tm_type_elements;
for (i = 0; i < 9; i++)
tm_type_elements[i] = &ffi_type_sint;
tm_type_elements[9] = &ffi_type_slong;
tm_type_elements[10] = &ffi_type_pointer;
tm_type_elements[11] = NULL;
/* tm_type can now be used to represent tm argument types and
return types for ffi_prep_cif() */
}
Platform Specific Notes
=======================
@@ -340,8 +134,6 @@ You must use GNU Make to build libffi on SGI platforms.
The ARM port was performed on a NetWinder running ARM Linux ELF
(2.0.31) and gcc 2.8.1.
PowerPC System V ABI
--------------------
@@ -372,6 +164,9 @@ History
3.00 Feb-XX-08
Many changes, mostly thanks to the GCC project.
Cygnus Solutions is now Red Hat.
[10 years go by...]
1.20 Oct-5-98
Raffaele Sena produces ARM port.
@@ -456,34 +251,53 @@ History
Authors & Credits
=================
libffi was written by Anthony Green <green@cygnus.com>.
libffi was originally written by Anthony Green <green@redhat.com>.
Portions of libffi were derived from Gianni Mariani's free gencall
library for Silicon Graphics machines.
The developers of the GNU Compiler Collection project have made
innumerable valuable contributions. See the ChangeLog file for
details.
Some of the ideas behind libffi were inspired by Gianni Mariani's free
gencall library for Silicon Graphics machines.
The closure mechanism was designed and implemented by Kresten Krab
Thorup.
The Sparc port was derived from code contributed by the fine folks at
Visible Decisions Inc <http://www.vdi.com>. Further enhancements were
made by Gordon Irlam at Cygnus Solutions <http://www.cygnus.com>.
Major processor architecture ports were contributed by the following
developers:
The Alpha port was written by Richard Henderson at Cygnus Solutions.
Andreas Schwab ported libffi to m68k Linux and provided a number of
bug fixes.
Geoffrey Keating ported libffi to the PowerPC.
Raffaele Sena ported libffi to the ARM.
alpha Richard Henderson
arm Raffaele Sena
cris Simon Posnjak, Hans-Peter Nilsson
frv Anthony Green
ia64 Hans Boehm
m32r Kazuhiro Inaoka
m68k Andreas Schwab
mips Anthony Green
mips64 David Daney
pa Randolph Chung
powerpc Geoffrey Keating
powerpc64 Jakub Jelinek
s390 Gerhard Tonn, Ulrich Weigand
sh Kaz Kojima
sh64 Kaz Kojima
sparc Anthony Green, Gordon Irlam
x86 Anthony Green
x86-64 Bo Thorsen
Jesper Skov and Andrew Haley both did more than their fair share of
stepping through the code and tracking down bugs.
Thanks also to Tom Tromey for bug fixes and configuration help.
Thanks also to Tom Tromey for bug fixes, documentation and
configuration help.
Thanks to Jim Blandy, who provided some useful feedback on the libffi
interface.
Andreas Tobler has done a tremendous amount of work on the testsuite.
The list above is almost certainly incomplete and inaccurate. I'm
happy to make corrections or additions upon request.
If you have a problem, or have found a bug, please send a note to
green@cygnus.com.
green@redhat.com.

23
libffi/configure vendored
View File

@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.61 for libffi 2.99.2.
# Generated by GNU Autoconf 2.61 for libffi 2.99.3.
#
# Report bugs to <http://gcc.gnu.org/bugs.html>.
#
@@ -728,8 +728,8 @@ SHELL=${CONFIG_SHELL-/bin/sh}
# Identity of this package.
PACKAGE_NAME='libffi'
PACKAGE_TARNAME='libffi'
PACKAGE_VERSION='2.99.2'
PACKAGE_STRING='libffi 2.99.2'
PACKAGE_VERSION='2.99.3'
PACKAGE_STRING='libffi 2.99.3'
PACKAGE_BUGREPORT='http://gcc.gnu.org/bugs.html'
# Factoring default headers for most tests.
@@ -1457,7 +1457,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
\`configure' configures libffi 2.99.2 to adapt to many kinds of systems.
\`configure' configures libffi 2.99.3 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1528,7 +1528,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of libffi 2.99.2:";;
short | recursive ) echo "Configuration of libffi 2.99.3:";;
esac
cat <<\_ACEOF
@@ -1638,7 +1638,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
libffi configure 2.99.2
libffi configure 2.99.3
generated by GNU Autoconf 2.61
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
@@ -1652,7 +1652,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by libffi $as_me 2.99.2, which was
It was created by libffi $as_me 2.99.3, which was
generated by GNU Autoconf 2.61. Invocation command line was
$ $0 $@
@@ -2475,7 +2475,7 @@ fi
# Define the identity of the package.
PACKAGE='libffi'
VERSION='2.99.2'
VERSION='2.99.3'
cat >>confdefs.h <<_ACEOF
@@ -22695,7 +22695,7 @@ ac_config_commands="$ac_config_commands src"
ac_config_links="$ac_config_links include/ffitarget.h:src/$TARGETDIR/ffitarget.h"
ac_config_files="$ac_config_files include/Makefile include/ffi.h Makefile testsuite/Makefile libffi.pc"
ac_config_files="$ac_config_files include/Makefile include/ffi.h Makefile testsuite/Makefile man/Makefile libffi.pc"
cat >confcache <<\_ACEOF
@@ -23297,7 +23297,7 @@ exec 6>&1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by libffi $as_me 2.99.2, which was
This file was extended by libffi $as_me 2.99.3, which was
generated by GNU Autoconf 2.61. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -23354,7 +23354,7 @@ Report bugs to <bug-autoconf@gnu.org>."
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF
ac_cs_version="\\
libffi config.status 2.99.2
libffi config.status 2.99.3
configured by $0, generated by GNU Autoconf 2.61,
with options \\"`echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"
@@ -23478,6 +23478,7 @@ do
"include/ffi.h") CONFIG_FILES="$CONFIG_FILES include/ffi.h" ;;
"Makefile") CONFIG_FILES="$CONFIG_FILES Makefile" ;;
"testsuite/Makefile") CONFIG_FILES="$CONFIG_FILES testsuite/Makefile" ;;
"man/Makefile") CONFIG_FILES="$CONFIG_FILES man/Makefile" ;;
"libffi.pc") CONFIG_FILES="$CONFIG_FILES libffi.pc" ;;
*) { { echo "$as_me:$LINENO: error: invalid argument: $ac_config_target" >&5

View File

@@ -2,7 +2,7 @@ dnl Process this with autoconf to create configure
AC_PREREQ(2.59)
AC_INIT([libffi], [2.99.2], [http://gcc.gnu.org/bugs.html])
AC_INIT([libffi], [2.99.3], [http://gcc.gnu.org/bugs.html])
AC_CONFIG_HEADERS([fficonfig.h])
AC_CANONICAL_SYSTEM
@@ -352,6 +352,6 @@ test -d src/$TARGETDIR || mkdir src/$TARGETDIR
AC_CONFIG_LINKS(include/ffitarget.h:src/$TARGETDIR/ffitarget.h)
AC_CONFIG_FILES(include/Makefile include/ffi.h Makefile testsuite/Makefile libffi.pc)
AC_CONFIG_FILES(include/Makefile include/ffi.h Makefile testsuite/Makefile man/Makefile libffi.pc)
AC_OUTPUT

533
libffi/doc/libffi.info Normal file
View File

@@ -0,0 +1,533 @@
This is ../libffi/doc/libffi.info, produced by makeinfo version 4.11
from ../libffi/doc/libffi.texi.
This manual is for Libffi, a portable foreign-function interface
library.
Copyright (C) 2008 Red Hat, Inc.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or
(at your option) any later version. A copy of the license is
included in the section entitled "GNU General Public License".
INFO-DIR-SECTION
START-INFO-DIR-ENTRY
* libffi: (libffi). Portable foreign-function interface library.
END-INFO-DIR-ENTRY

File: libffi.info, Node: Top, Next: Introduction, Up: (dir)
libffi
******
This manual is for Libffi, a portable foreign-function interface
library.
Copyright (C) 2008 Red Hat, Inc.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or
(at your option) any later version. A copy of the license is
included in the section entitled "GNU General Public License".
* Menu:
* Introduction:: What is libffi?
* Using libffi:: How to use libffi.
* Missing Features:: Things libffi can't do.
* Index:: Index.

File: libffi.info, Node: Introduction, Next: Using libffi, Prev: Top, Up: Top
1 What is libffi?
*****************
Compilers for high level languages generate code that follow certain
conventions. These conventions are necessary, in part, for separate
compilation to work. One such convention is the "calling convention".
The calling convention is a set of assumptions made by the compiler
about where function arguments will be found on entry to a function. A
calling convention also specifies where the return value for a function
is found. The calling convention is also sometimes called the "ABI" or
"Application Binary Interface".
Some programs may not know at the time of compilation what arguments
are to be passed to a function. For instance, an interpreter may be
told at run-time about the number and types of arguments used to call a
given function. `Libffi' can be used in such programs to provide a
bridge from the interpreter program to compiled code.
The `libffi' library provides a portable, high level programming
interface to various calling conventions. This allows a programmer to
call any function specified by a call interface description at run time.
FFI stands for Foreign Function Interface. A foreign function
interface is the popular name for the interface that allows code
written in one language to call code written in another language. The
`libffi' library really only provides the lowest, machine dependent
layer of a fully featured foreign function interface. A layer must
exist above `libffi' that handles type conversions for values passed
between the two languages.

File: libffi.info, Node: Using libffi, Next: Missing Features, Prev: Introduction, Up: Top
2 Using libffi
**************
* Menu:
* The Basics:: The basic libffi API.
* Simple Example:: A simple example.
* Types:: libffi type descriptions.
* Multiple ABIs:: Different passing styles on one platform.
* The Closure API:: Writing a generic function.

File: libffi.info, Node: The Basics, Next: Simple Example, Up: Using libffi
2.1 The Basics
==============
`Libffi' assumes that you have a pointer to the function you wish to
call and that you know the number and types of arguments to pass it, as
well as the return type of the function.
The first thing you must do is create an `ffi_cif' object that
matches the signature of the function you wish to call. This is a
separate step because it is common to make multiple calls using a
single `ffi_cif'. The "cif" in `ffi_cif' stands for Call InterFace.
To prepare a call interface object, use the function `ffi_prep_cif'.
-- Function: ffi_status ffi_prep_cif (ffi_cif *CIF, ffi_abi ABI,
unsigned int NARGS, ffi_type *RTYPE, ffi_type **ARGTYPES)
This initializes CIF according to the given parameters.
ABI is the ABI to use; normally `FFI_DEFAULT_ABI' is what you
want. *note Multiple ABIs:: for more information.
NARGS is the number of arguments that this function accepts.
`libffi' does not yet handle varargs functions; see *note Missing
Features:: for more information.
RTYPE is a pointer to an `ffi_type' structure that describes the
return type of the function. *Note Types::.
ARGTYPES is a vector of `ffi_type' pointers. ARGTYPES must have
NARGS elements. If NARGS is 0, this argument is ignored.
`ffi_prep_cif' returns a `libffi' status code, of type
`ffi_status'. This will be either `FFI_OK' if everything worked
properly; `FFI_BAD_TYPEDEF' if one of the `ffi_type' objects is
incorrect; or `FFI_BAD_ABI' if the ABI parameter is invalid.
To call a function using an initialized `ffi_cif', use the
`ffi_call' function:
-- Function: void ffi_call (ffi_cif *CIF, void *FN, void *RVALUE, void
**AVALUES)
This calls the function FN according to the description given in
CIF. CIF must have already been prepared using `ffi_prep_cif'.
RVALUE is a pointer to a chunk of memory that will hold the result
of the function call. This must be large enough to hold the
result and must be suitably aligned; it is the caller's
responsibility to ensure this. If CIF declares that the function
returns `void' (using `ffi_type_void'), then RVALUE is ignored.
If RVALUE is `NULL', then the return value is discarded.
AVALUES is a vector of `void *' pointers that point to the memory
locations holding the argument values for a call. If CIF declares
that the function has no arguments (i.e., NARGS was 0), then
AVALUES is ignored.

File: libffi.info, Node: Simple Example, Next: Types, Prev: The Basics, Up: Using libffi
2.2 Simple Example
==================
Here is a trivial example that calls `puts' a few times.
#include <stdio.h>
#include <ffi.h>
int main()
{
ffi_cif cif;
ffi_type *args[1];
void *values[1];
char *s;
int rc;
/* Initialize the argument info vectors */
args[0] = &ffi_type_pointer;
values[0] = &s;
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
&ffi_type_uint, args) == FFI_OK)
{
s = "Hello World!";
ffi_call(&cif, puts, &rc, values);
/* rc now holds the result of the call to puts */
/* values holds a pointer to the function's arg, so to
call puts() again all we need to do is change the
value of s */
s = "This is cool!";
ffi_call(&cif, puts, &rc, values);
}
return 0;
}

File: libffi.info, Node: Types, Next: Multiple ABIs, Prev: Simple Example, Up: Using libffi
2.3 Types
=========
* Menu:
* Primitive Types:: Built-in types.
* Structures:: Structure types.
* Type Example:: Structure type example.

File: libffi.info, Node: Primitive Types, Next: Structures, Up: Types
2.3.1 Primitive Types
---------------------
`Libffi' provides a number of built-in type descriptors that can be
used to describe argument and return types:
`ffi_type_void'
The type `void'. This cannot be used for argument types, only for
return values.
`ffi_type_uint8'
An unsigned, 8-bit integer type.
`ffi_type_sint8'
A signed, 8-bit integer type.
`ffi_type_uint16'
An unsigned, 16-bit integer type.
`ffi_type_sint16'
A signed, 16-bit integer type.
`ffi_type_uint32'
An unsigned, 32-bit integer type.
`ffi_type_sint32'
A signed, 32-bit integer type.
`ffi_type_uint64'
An unsigned, 64-bit integer type.
`ffi_type_sint64'
A signed, 64-bit integer type.
`ffi_type_float'
The C `float' type.
`ffi_type_double'
The C `double' type.
`ffi_type_uchar'
The C `unsigned char' type.
`ffi_type_schar'
The C `signed char' type. (Note that there is not an exact
equivalent to the C `char' type in `libffi'; ordinarily you should
either use `ffi_type_schar' or `ffi_type_uchar' depending on
whether `char' is signed.)
`ffi_type_ushort'
The C `unsigned short' type.
`ffi_type_sshort'
The C `short' type.
`ffi_type_uint'
The C `unsigned int' type.
`ffi_type_sint'
The C `int' type.
`ffi_type_ulong'
The C `unsigned long' type.
`ffi_type_slong'
The C `long' type.
`ffi_type_longdouble'
On platforms that have a C `long double' type, this is defined.
On other platforms, it is not.
`ffi_type_pointer'
A generic `void *' pointer. You should use this for all pointers,
regardless of their real type.
Each of these is of type `ffi_type', so you must take the address
when passing to `ffi_prep_cif'.

File: libffi.info, Node: Structures, Next: Type Example, Prev: Primitive Types, Up: Types
2.3.2 Structures
----------------
Although `libffi' has no special support for unions or bit-fields, it
is perfectly happy passing structures back and forth. You must first
describe the structure to `libffi' by creating a new `ffi_type' object
for it.
-- ffi_type:
The `ffi_type' has the following members:
`size_t size'
This is set by `libffi'; you should initialize it to zero.
`unsigned short alignment'
This is set by `libffi'; you should initialize it to zero.
`unsigned short type'
For a structure, this should be set to `FFI_TYPE_STRUCT'.
`ffi_type **elements'
This is a `NULL'-terminated array of pointers to `ffi_type'
objects. There is one element per field of the struct.

File: libffi.info, Node: Type Example, Prev: Structures, Up: Types
2.3.3 Type Example
------------------
The following example initializes a `ffi_type' object representing the
`tm' struct from Linux's `time.h'.
Here is how the struct is defined:
struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
/* Those are for future use. */
long int __tm_gmtoff__;
__const char *__tm_zone__;
};
Here is the corresponding code to describe this struct to `libffi':
{
ffi_type tm_type;
ffi_type *tm_type_elements[12];
int i;
tm_type.size = tm_type.alignment = 0;
tm_type.elements = &tm_type_elements;
for (i = 0; i < 9; i++)
tm_type_elements[i] = &ffi_type_sint;
tm_type_elements[9] = &ffi_type_slong;
tm_type_elements[10] = &ffi_type_pointer;
tm_type_elements[11] = NULL;
/* tm_type can now be used to represent tm argument types and
return types for ffi_prep_cif() */
}

File: libffi.info, Node: Multiple ABIs, Next: The Closure API, Prev: Types, Up: Using libffi
2.4 Multiple ABIs
=================
A given platform may provide multiple different ABIs at once. For
instance, the x86 platform has both `stdcall' and `fastcall' functions.
`libffi' provides some support for this. However, this is
necessarily platform-specific.

File: libffi.info, Node: The Closure API, Prev: Multiple ABIs, Up: Using libffi
2.5 The Closure API
===================
`libffi' also provides a way to write a generic function - a function
that can accept and decode any combination of arguments. This can be
useful when writing an interpreter, or to provide wrappers for
arbitrary functions.
This facility is called the "closure API". Closures are not
supported on all platforms; you can check the `FFI_CLOSURES' define to
determine whether they are supported on the current platform.
Because closures work by assembling a tiny function at runtime, they
require special allocation on platforms that have a non-executable
heap. Memory management for closures is handled by a pair of functions:
-- Function: void *ffi_closure_alloc (size_t SIZE, void **CODE)
Allocate a chunk of memory holding SIZE bytes. This returns a
pointer to the writable address, and sets *CODE to the
corresponding executable address.
SIZE should be sufficient to hold a `ffi_closure' object.
-- Function: void ffi_closure_free (void *WRITABLE)
Free memory allocated using `ffi_closure_alloc'. The argument is
the writable address that was returned.
Once you have allocated the memory for a closure, you must construct
a `ffi_cif' describing the function call. Finally you can prepare the
closure function:
-- Function: ffi_status ffi_prep_closure_loc (ffi_closure *CLOSURE,
ffi_cif *CIF, void (*FUN) (ffi_cif *CIF, void *RET, void
**ARGS, void *USER_DATA), void *USER_DATA, void *CODELOC)
Prepare a closure function.
CLOSURE is the address of a `ffi_closure' object; this is the
writable address returned by `ffi_closure_alloc'.
CIF is the `ffi_cif' describing the function parameters.
USER_DATA is an arbitrary datum that is passed, uninterpreted, to
your closure function.
CODELOC is the executable address returned by `ffi_closure_alloc'.
FUN is the function which will be called when the closure is
invoked. It is called with the arguments:
CIF
The `ffi_cif' passed to `ffi_prep_closure_loc'.
RET
A pointer to the memory used for the function's return value.
FUN must fill this, unless the function is declared as
returning `void'.
ARGS
A vector of pointers to memory holding the arguments to the
function.
USER_DATA
The same USER_DATA that was passed to `ffi_prep_closure_loc'.
`ffi_prep_closure_loc' will return `FFI_OK' if everything went ok,
and something else on error.
After calling `ffi_prep_closure_loc', you can cast CODELOC to the
appropriate pointer-to-function type.
You may see old code referring to `ffi_prep_closure'. This function
is deprecated, as it cannot handle the need for separate writable and
executable addresses.

File: libffi.info, Node: Missing Features, Next: Index, Prev: Using libffi, Up: Top
3 Missing Features
******************
`libffi' is missing a few features. We welcome patches to add support
for these.
* There is no support for calling varargs functions. This may work
on some platforms, depending on how the ABI is defined, but it is
not reliable.
* There is no support for bit fields in structures.
* The closure API is
* The "raw" API is undocumented.

File: libffi.info, Node: Index, Prev: Missing Features, Up: Top
Index
*****
[index]
* Menu:
* : Structures. (line 12)
* ABI: Introduction. (line 13)
* Application Binary Interface: Introduction. (line 13)
* calling convention: Introduction. (line 13)
* cif: The Basics. (line 14)
* closure API: The Closure API. (line 13)
* closures: The Closure API. (line 13)
* FFI: Introduction. (line 31)
* ffi_call: The Basics. (line 41)
* ffi_closure_alloca: The Closure API. (line 19)
* ffi_closure_free: The Closure API. (line 26)
* FFI_CLOSURES: The Closure API. (line 13)
* ffi_prep_cif: The Basics. (line 16)
* ffi_prep_closure_loc: The Closure API. (line 34)
* ffi_status <1>: The Closure API. (line 37)
* ffi_status: The Basics. (line 18)
* ffi_type: Structures. (line 11)
* ffi_type_double: Primitive Types. (line 41)
* ffi_type_float: Primitive Types. (line 38)
* ffi_type_longdouble: Primitive Types. (line 71)
* ffi_type_pointer: Primitive Types. (line 75)
* ffi_type_schar: Primitive Types. (line 47)
* ffi_type_sint: Primitive Types. (line 62)
* ffi_type_sint16: Primitive Types. (line 23)
* ffi_type_sint32: Primitive Types. (line 29)
* ffi_type_sint64: Primitive Types. (line 35)
* ffi_type_sint8: Primitive Types. (line 17)
* ffi_type_slong: Primitive Types. (line 68)
* ffi_type_sshort: Primitive Types. (line 56)
* ffi_type_uchar: Primitive Types. (line 44)
* ffi_type_uint: Primitive Types. (line 59)
* ffi_type_uint16: Primitive Types. (line 20)
* ffi_type_uint32: Primitive Types. (line 26)
* ffi_type_uint64: Primitive Types. (line 32)
* ffi_type_uint8: Primitive Types. (line 14)
* ffi_type_ulong: Primitive Types. (line 65)
* ffi_type_ushort: Primitive Types. (line 53)
* ffi_type_void: Primitive Types. (line 10)
* Foreign Function Interface: Introduction. (line 31)
* void <1>: The Closure API. (line 20)
* void: The Basics. (line 43)

Tag Table:
Node: Top688
Node: Introduction1424
Node: Using libffi3060
Node: The Basics3495
Node: Simple Example6102
Node: Types7129
Node: Primitive Types7412
Node: Structures9232
Node: Type Example10092
Node: Multiple ABIs11315
Node: The Closure API11686
Node: Missing Features14606
Node: Index15099

End Tag Table

4
libffi/doc/stamp-vti Normal file
View File

@@ -0,0 +1,4 @@
@set UPDATED 14 February 2008
@set UPDATED-MONTH February 2008
@set EDITION 2.99.3
@set VERSION 2.99.3

View File

@@ -1,4 +1,4 @@
@set UPDATED 14 February 2008
@set UPDATED-MONTH February 2008
@set EDITION 2.99.2
@set VERSION 2.99.2
@set EDITION 2.99.3
@set VERSION 2.99.3

8
libffi/man/Makefile.am Normal file
View File

@@ -0,0 +1,8 @@
## Process this with automake to create Makefile.in
AUTOMAKE_OPTIONS=foreign
EXTRA_DIST = ffi.3 ffi_call.3 ffi_prep_cif.3 ffi_prep_closure.3
man_MANS = ffi.3 ffi_call.3 ffi_prep_cif.3 ffi_prep_closure.3

395
libffi/man/Makefile.in Normal file
View File

@@ -0,0 +1,395 @@
# Makefile.in generated by automake 1.10 from Makefile.am.
# @configure_input@
# Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
# 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
# This Makefile.in is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY, to the extent permitted by law; without
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.
@SET_MAKE@
VPATH = @srcdir@
pkgdatadir = $(datadir)/@PACKAGE@
pkglibdir = $(libdir)/@PACKAGE@
pkgincludedir = $(includedir)/@PACKAGE@
am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd
install_sh_DATA = $(install_sh) -c -m 644
install_sh_PROGRAM = $(install_sh) -c
install_sh_SCRIPT = $(install_sh) -c
INSTALL_HEADER = $(INSTALL_DATA)
transform = $(program_transform_name)
NORMAL_INSTALL = :
PRE_INSTALL = :
POST_INSTALL = :
NORMAL_UNINSTALL = :
PRE_UNINSTALL = :
POST_UNINSTALL = :
build_triplet = @build@
host_triplet = @host@
target_triplet = @target@
subdir = man
DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in
ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
am__aclocal_m4_deps = $(top_srcdir)/acinclude.m4 \
$(top_srcdir)/configure.ac
am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \
$(ACLOCAL_M4)
mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs
CONFIG_HEADER = $(top_builddir)/fficonfig.h
CONFIG_CLEAN_FILES =
SOURCES =
DIST_SOURCES =
man3dir = $(mandir)/man3
am__installdirs = "$(DESTDIR)$(man3dir)"
NROFF = nroff
MANS = $(man_MANS)
DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST)
ACLOCAL = @ACLOCAL@
ALLOCA = @ALLOCA@
AMTAR = @AMTAR@
AM_RUNTESTFLAGS = @AM_RUNTESTFLAGS@
AR = @AR@
AUTOCONF = @AUTOCONF@
AUTOHEADER = @AUTOHEADER@
AUTOMAKE = @AUTOMAKE@
AWK = @AWK@
CC = @CC@
CCAS = @CCAS@
CCASDEPMODE = @CCASDEPMODE@
CCASFLAGS = @CCASFLAGS@
CCDEPMODE = @CCDEPMODE@
CFLAGS = @CFLAGS@
CPP = @CPP@
CPPFLAGS = @CPPFLAGS@
CXX = @CXX@
CXXCPP = @CXXCPP@
CXXDEPMODE = @CXXDEPMODE@
CXXFLAGS = @CXXFLAGS@
CYGPATH_W = @CYGPATH_W@
DEFS = @DEFS@
DEPDIR = @DEPDIR@
ECHO = @ECHO@
ECHO_C = @ECHO_C@
ECHO_N = @ECHO_N@
ECHO_T = @ECHO_T@
EGREP = @EGREP@
EXEEXT = @EXEEXT@
F77 = @F77@
FFLAGS = @FFLAGS@
GREP = @GREP@
HAVE_LONG_DOUBLE = @HAVE_LONG_DOUBLE@
INSTALL = @INSTALL@
INSTALL_DATA = @INSTALL_DATA@
INSTALL_PROGRAM = @INSTALL_PROGRAM@
INSTALL_SCRIPT = @INSTALL_SCRIPT@
INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@
LDFLAGS = @LDFLAGS@
LIBOBJS = @LIBOBJS@
LIBS = @LIBS@
LIBTOOL = @LIBTOOL@
LN_S = @LN_S@
LTLIBOBJS = @LTLIBOBJS@
MAINT = @MAINT@
MAKEINFO = @MAKEINFO@
MKDIR_P = @MKDIR_P@
OBJEXT = @OBJEXT@
PACKAGE = @PACKAGE@
PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@
PACKAGE_NAME = @PACKAGE_NAME@
PACKAGE_STRING = @PACKAGE_STRING@
PACKAGE_TARNAME = @PACKAGE_TARNAME@
PACKAGE_VERSION = @PACKAGE_VERSION@
PATH_SEPARATOR = @PATH_SEPARATOR@
RANLIB = @RANLIB@
SED = @SED@
SET_MAKE = @SET_MAKE@
SHELL = @SHELL@
STRIP = @STRIP@
TARGET = @TARGET@
TARGETDIR = @TARGETDIR@
VERSION = @VERSION@
abs_builddir = @abs_builddir@
abs_srcdir = @abs_srcdir@
abs_top_builddir = @abs_top_builddir@
abs_top_srcdir = @abs_top_srcdir@
ac_ct_CC = @ac_ct_CC@
ac_ct_CXX = @ac_ct_CXX@
ac_ct_F77 = @ac_ct_F77@
am__include = @am__include@
am__leading_dot = @am__leading_dot@
am__quote = @am__quote@
am__tar = @am__tar@
am__untar = @am__untar@
bindir = @bindir@
build = @build@
build_alias = @build_alias@
build_cpu = @build_cpu@
build_os = @build_os@
build_vendor = @build_vendor@
builddir = @builddir@
datadir = @datadir@
datarootdir = @datarootdir@
docdir = @docdir@
dvidir = @dvidir@
exec_prefix = @exec_prefix@
host = @host@
host_alias = @host_alias@
host_cpu = @host_cpu@
host_os = @host_os@
host_vendor = @host_vendor@
htmldir = @htmldir@
includedir = @includedir@
infodir = @infodir@
install_sh = @install_sh@
libdir = @libdir@
libexecdir = @libexecdir@
localedir = @localedir@
localstatedir = @localstatedir@
mandir = @mandir@
mkdir_p = @mkdir_p@
oldincludedir = @oldincludedir@
pdfdir = @pdfdir@
prefix = @prefix@
program_transform_name = @program_transform_name@
psdir = @psdir@
sbindir = @sbindir@
sharedstatedir = @sharedstatedir@
srcdir = @srcdir@
sysconfdir = @sysconfdir@
target = @target@
target_alias = @target_alias@
target_cpu = @target_cpu@
target_os = @target_os@
target_vendor = @target_vendor@
toolexecdir = @toolexecdir@
toolexeclibdir = @toolexeclibdir@
top_builddir = @top_builddir@
top_srcdir = @top_srcdir@
AUTOMAKE_OPTIONS = foreign
EXTRA_DIST = ffi.3 ffi_call.3 ffi_prep_cif.3 ffi_prep_closure.3
man_MANS = ffi.3 ffi_call.3 ffi_prep_cif.3 ffi_prep_closure.3
all: all-am
.SUFFIXES:
$(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps)
@for dep in $?; do \
case '$(am__configure_deps)' in \
*$$dep*) \
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh \
&& exit 0; \
exit 1;; \
esac; \
done; \
echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign man/Makefile'; \
cd $(top_srcdir) && \
$(AUTOMAKE) --foreign man/Makefile
.PRECIOUS: Makefile
Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status
@case '$?' in \
*config.status*) \
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \
*) \
echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \
cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \
esac;
$(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
mostlyclean-libtool:
-rm -f *.lo
clean-libtool:
-rm -rf .libs _libs
install-man3: $(man3_MANS) $(man_MANS)
@$(NORMAL_INSTALL)
test -z "$(man3dir)" || $(MKDIR_P) "$(DESTDIR)$(man3dir)"
@list='$(man3_MANS) $(dist_man3_MANS) $(nodist_man3_MANS)'; \
l2='$(man_MANS) $(dist_man_MANS) $(nodist_man_MANS)'; \
for i in $$l2; do \
case "$$i" in \
*.3*) list="$$list $$i" ;; \
esac; \
done; \
for i in $$list; do \
if test -f $(srcdir)/$$i; then file=$(srcdir)/$$i; \
else file=$$i; fi; \
ext=`echo $$i | sed -e 's/^.*\\.//'`; \
case "$$ext" in \
3*) ;; \
*) ext='3' ;; \
esac; \
inst=`echo $$i | sed -e 's/\\.[0-9a-z]*$$//'`; \
inst=`echo $$inst | sed -e 's/^.*\///'`; \
inst=`echo $$inst | sed '$(transform)'`.$$ext; \
echo " $(INSTALL_DATA) '$$file' '$(DESTDIR)$(man3dir)/$$inst'"; \
$(INSTALL_DATA) "$$file" "$(DESTDIR)$(man3dir)/$$inst"; \
done
uninstall-man3:
@$(NORMAL_UNINSTALL)
@list='$(man3_MANS) $(dist_man3_MANS) $(nodist_man3_MANS)'; \
l2='$(man_MANS) $(dist_man_MANS) $(nodist_man_MANS)'; \
for i in $$l2; do \
case "$$i" in \
*.3*) list="$$list $$i" ;; \
esac; \
done; \
for i in $$list; do \
ext=`echo $$i | sed -e 's/^.*\\.//'`; \
case "$$ext" in \
3*) ;; \
*) ext='3' ;; \
esac; \
inst=`echo $$i | sed -e 's/\\.[0-9a-z]*$$//'`; \
inst=`echo $$inst | sed -e 's/^.*\///'`; \
inst=`echo $$inst | sed '$(transform)'`.$$ext; \
echo " rm -f '$(DESTDIR)$(man3dir)/$$inst'"; \
rm -f "$(DESTDIR)$(man3dir)/$$inst"; \
done
tags: TAGS
TAGS:
ctags: CTAGS
CTAGS:
distdir: $(DISTFILES)
@srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \
topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \
list='$(DISTFILES)'; \
dist_files=`for file in $$list; do echo $$file; done | \
sed -e "s|^$$srcdirstrip/||;t" \
-e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \
case $$dist_files in \
*/*) $(MKDIR_P) `echo "$$dist_files" | \
sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \
sort -u` ;; \
esac; \
for file in $$dist_files; do \
if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \
if test -d $$d/$$file; then \
dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \
if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \
cp -pR $(srcdir)/$$file $(distdir)$$dir || exit 1; \
fi; \
cp -pR $$d/$$file $(distdir)$$dir || exit 1; \
else \
test -f $(distdir)/$$file \
|| cp -p $$d/$$file $(distdir)/$$file \
|| exit 1; \
fi; \
done
check-am: all-am
check: check-am
all-am: Makefile $(MANS)
installdirs:
for dir in "$(DESTDIR)$(man3dir)"; do \
test -z "$$dir" || $(MKDIR_P) "$$dir"; \
done
install: install-am
install-exec: install-exec-am
install-data: install-data-am
uninstall: uninstall-am
install-am: all-am
@$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am
installcheck: installcheck-am
install-strip:
$(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \
install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \
`test -z '$(STRIP)' || \
echo "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'"` install
mostlyclean-generic:
clean-generic:
distclean-generic:
-test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES)
maintainer-clean-generic:
@echo "This command is intended for maintainers to use"
@echo "it deletes files that may require special tools to rebuild."
clean: clean-am
clean-am: clean-generic clean-libtool mostlyclean-am
distclean: distclean-am
-rm -f Makefile
distclean-am: clean-am distclean-generic
dvi: dvi-am
dvi-am:
html: html-am
info: info-am
info-am:
install-data-am: install-man
install-dvi: install-dvi-am
install-exec-am:
install-html: install-html-am
install-info: install-info-am
install-man: install-man3
install-pdf: install-pdf-am
install-ps: install-ps-am
installcheck-am:
maintainer-clean: maintainer-clean-am
-rm -f Makefile
maintainer-clean-am: distclean-am maintainer-clean-generic
mostlyclean: mostlyclean-am
mostlyclean-am: mostlyclean-generic mostlyclean-libtool
pdf: pdf-am
pdf-am:
ps: ps-am
ps-am:
uninstall-am: uninstall-man
uninstall-man: uninstall-man3
.MAKE: install-am install-strip
.PHONY: all all-am check check-am clean clean-generic clean-libtool \
distclean distclean-generic distclean-libtool distdir dvi \
dvi-am html html-am info info-am install install-am \
install-data install-data-am install-dvi install-dvi-am \
install-exec install-exec-am install-html install-html-am \
install-info install-info-am install-man install-man3 \
install-pdf install-pdf-am install-ps install-ps-am \
install-strip installcheck installcheck-am installdirs \
maintainer-clean maintainer-clean-generic mostlyclean \
mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \
uninstall uninstall-am uninstall-man uninstall-man3
# Tell versions [3.59,3.63) of GNU make to not export all variables.
# Otherwise a system limit (for SysV at least) may be exceeded.
.NOEXPORT:

39
libffi/man/ffi.3 Normal file
View File

@@ -0,0 +1,39 @@
.Dd July 20, 2007
.Dt FFI 3
.Sh NAME
.Nm FFI
.Nd Foreign Function Interface
.Sh LIBRARY
libffi, -lffi
.Sh SYNOPSIS
.In ffi.h
.Ft ffi_status
.Fo ffi_prep_cif
.Fa "ffi_cif *cif"
.Fa "ffi_abi abi"
.Fa "unsigned int nargs"
.Fa "ffi_type *rtype"
.Fa "ffi_type **atypes"
.Fc
.Ft ffi_status
.Fo ffi_prep_closure
.Fa "ffi_closure *closure"
.Fa "ffi_cif *cif"
.Fa "void (*fun)(ffi_cif*,void*,void**,void*)"
.Fa "void *user_data"
.Fc
.Ft void
.Fo ffi_call
.Fa "ffi_cif *cif"
.Fa "void (*fn)(void)"
.Fa "void *rvalue"
.Fa "void **avalue"
.Fc
.Sh DESCRIPTION
The foreign function interface provides a mechanism by which a function can
generate a call to another function at runtime without requiring knowledge of
the called function's interface at compile time.
.Sh SEE ALSO
.Xr ffi_prep_cif 3 ,
.Xr ffi_prep_closure 3 ,
.Xr ffi_call 3

103
libffi/man/ffi_call.3 Normal file
View File

@@ -0,0 +1,103 @@
.Dd July 20, 2007
.Dt ffi_call 3
.Sh NAME
.Nm ffi_call
.Nd Invoke a foreign function.
.Sh SYNOPSIS
.In ffi.h
.Ft void
.Fo ffi_call
.Fa "ffi_cif *cif"
.Fa "void (*fn)(void)"
.Fa "void *rvalue"
.Fa "void **avalue"
.Fc
.Sh DESCRIPTION
The
.Nm ffi_call
function provides a simple mechanism for invoking a function without
requiring knowledge of the function's interface at compile time.
.Fa fn
is called with the values retrieved from the pointers in the
.Fa avalue
array. The return value from
.Fa fn
is placed in storage pointed to by
.Fa rvalue .
.Fa cif
contains information describing the data types, sizes and alignments of the
arguments to and return value from
.Fa fn ,
and must be initialized with
.Nm ffi_prep_cif
before it is used with
.Nm ffi_call .
.Pp
.Fa rvalue
must point to storage that is sizeof(long) or larger. For smaller
return value sizes, the
.Nm ffi_arg
or
.Nm ffi_sarg
integral type must be used to hold
the return value.
.Sh EXAMPLES
.Bd -literal
#include <ffi/ffi.h>
#include <stdio.h>
unsigned char
foo(unsigned int, float);
int
main(int argc, const char **argv)
{
ffi_cif cif;
ffi_type *arg_types[2];
void *arg_values[2];
ffi_status status;
// Because the return value from foo() is smaller than sizeof(long), it
// must be passed as ffi_arg or ffi_sarg.
ffi_arg result;
// Specify the data type of each argument. Available types are defined
// in <ffi/ffi.h>.
arg_types[0] = &ffi_type_uint;
arg_types[1] = &ffi_type_float;
// Prepare the ffi_cif structure.
if ((status = ffi_prep_cif(&cif, FFI_DEFAULT_ABI,
2, &ffi_type_uint8, arg_types)) != FFI_OK)
{
// Handle the ffi_status error.
}
// Specify the values of each argument.
unsigned int arg1 = 42;
float arg2 = 5.1;
arg_values[0] = &arg1;
arg_values[1] = &arg2;
// Invoke the function.
ffi_call(&cif, FFI_FN(foo), &result, arg_values);
// The ffi_arg 'result' now contains the unsigned char returned from foo(),
// which can be accessed by a typecast.
printf("result is %hhu", (unsigned char)result);
return 0;
}
// The target function.
unsigned char
foo(unsigned int x, float y)
{
unsigned char result = x - y;
return result;
}
.Ed
.Sh SEE ALSO
.Xr ffi 3 ,
.Xr ffi_prep_cif 3

69
libffi/man/ffi_prep_cif.3 Normal file
View File

@@ -0,0 +1,69 @@
.Dd July 20, 2007
.Dt ffi_prep_cif 3
.Sh NAME
.Nm ffi_prep_cif
.Nd Prepare a
.Nm ffi_cif
structure for use with
.Nm ffi_call
or
.Nm ffi_prep_closure .
.Sh SYNOPSIS
.In ffi.h
.Ft ffi_status
.Fo ffi_prep_cif
.Fa "ffi_cif *cif"
.Fa "ffi_abi abi"
.Fa "unsigned int nargs"
.Fa "ffi_type *rtype"
.Fa "ffi_type **atypes"
.Fc
.Sh DESCRIPTION
The
.Nm ffi_prep_cif
function prepares a
.Nm ffi_cif
structure for use with
.Nm ffi_call
or
.Nm ffi_prep_closure .
.Fa abi
specifies a set of calling conventions to use.
.Fa atypes
is an array of
.Fa nargs
pointers to
.Nm ffi_type
structs that describe the data type, size and alignment of each argument.
.Fa rtype
points to an
.Nm ffi_type
that describes the data type, size and alignment of the
return value.
.Sh RETURN VALUES
Upon successful completion,
.Nm ffi_prep_cif
returns
.Nm FFI_OK .
It will return
.Nm FFI_BAD_TYPEDEF
if
.Fa cif
is
.Nm NULL
or
.Fa atypes
or
.Fa rtype
is malformed. If
.Fa abi
does not refer to a valid ABI,
.Nm FFI_BAD_ABI
will be returned. Available ABIs are
defined in
.Nm <ffitarget.h>
.
.Sh SEE ALSO
.Xr ffi 3 ,
.Xr ffi_call 3 ,
.Xr ffi_prep_closure 3

View File

@@ -0,0 +1,159 @@
.Dd July 20, 2007
.Dt ffi_prep_closure 3
.Sh NAME
.Nm ffi_prep_closure
.Nd Prepare a
.Nm ffi_closure
for execution.
.Sh SYNOPSIS
.In ffi.h
.Ft ffi_status
.Fo ffi_prep_closure
.Fa "ffi_closure *closure"
.Fa "ffi_cif *cif"
.Fa "void (*fun)(ffi_cif*,void*,void**,void*)"
.Fa "void *user_data"
.Fc
.Sh DESCRIPTION
.Fa closure
is prepared to execute
.Fa fun .
.Fa cif
contains information describing the data types, sizes and alignments of the
arguments to and return value from the function that will be called from
.Fa fun ,
and must be initialized with
.Nm ffi_prep_cif
before it is used with
.Nm ffi_prep_closure .
.Fa user_data
may point to additional data to be used in
.Fa fun .
If no additional data is needed,
.Fa user_data
may be
.Nm NULL .
When
.Fa closure
is invoked,
.Fa fun
is called with
.Fa cif ,
an array of pointers to arguments, a pointer to a return value, and
.Fa user_data .
.Pp
Some architectures do not allow the execution of data by default. In such cases,
it is necessary to manually alter the permissions of the page that contains
.Fa closure
prior to its execution.
.Sh RETURN VALUES
Upon successful completion,
.Nm ffi_prep_closure
returns
.Nm FFI_OK .
If the ABI specified in
.Fa cif
does not refer to a valid ABI,
.Nm FFI_BAD_ABI
will be returned. Available ABIs are
defined in
.Nm <ffi/ppc-ffitarget.h>
and
.Nm <ffi/x86-ffitarget.h> .
.Sh EXAMPLES
.Bd -literal
#include <ffi/ffi.h>
#include <sys/mman.h> // for mmap()
unsigned char
foo(unsigned int, float);
static void
foo_closure(ffi_cif*, void*, void**, void*);
int
main(int argc, const char **argv)
{
ffi_cif cif;
ffi_closure *closure;
ffi_type *arg_types[2];
ffi_arg result;
ffi_status status;
// Specify the data type of each argument. Available types are defined
// in <ffi/ffi.h>.
arg_types[0] = &ffi_type_uint;
arg_types[1] = &ffi_type_float;
// Allocate a page to hold the closure with read and write permissions.
if ((closure = mmap(NULL, sizeof(ffi_closure), PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0)) == (void*)-1)
{
// Check errno and handle the error.
}
// Prepare the ffi_cif structure.
if ((status = ffi_prep_cif(&cif, FFI_DEFAULT_ABI,
2, &ffi_type_uint8, arg_types)) != FFI_OK)
{
// Handle the ffi_status error.
}
// Prepare the ffi_closure structure.
if ((status = ffi_prep_closure(closure, &cif, foo_closure, NULL)) != FFI_OK)
{
// Handle the ffi_status error.
}
// Ensure that the closure will execute on all architectures.
if (mprotect(closure, sizeof(closure), PROT_READ | PROT_EXEC) == -1)
{
// Check errno and handle the error.
}
// The closure is now ready to be executed, and can be saved for later
// execution if desired.
// Invoke the closure.
result = ((unsigned char(*)(float, unsigned int))closure)(42, 5.1);
// Free the memory associated with the closure.
if (munmap(closure, sizeof(closure)) == -1)
{
// Check errno and handle the error.
}
return 0;
}
// Invoking the closure transfers control to this function.
static void
foo_closure(ffi_cif* cif, void* result, void** args, void* userdata)
{
// Access the arguments to be sent to foo().
float arg1 = *(float*)args[0];
unsigned int arg2 = *(unsigned int*)args[1];
// Call foo() and save its return value.
unsigned char ret_val = foo(arg1, arg2);
// Copy the returned value into result. Because the return value of foo()
// is smaller than sizeof(long), typecast it to ffi_arg. Use ffi_sarg
// instead for signed types.
*(ffi_arg*)result = (ffi_arg)ret_val;
}
// The closed-over function.
unsigned char
foo(unsigned int x, float y)
{
unsigned char result = x - y;
return result;
}
.Ed
.Sh SEE ALSO
.Xr ffi 3 ,
.Xr ffi_prep_cif 3 ,
.Xr mmap 2 ,
.Xr munmap 2 ,
.Xr mprotect 2