This commit is contained in:
Anthony Green
2010-11-21 10:50:56 -05:00
parent 84e8de6e9f
commit 2db72615b5
384 changed files with 22979 additions and 168722 deletions

View File

@@ -1,164 +0,0 @@
10
dir
161959
svn://gcc.gnu.org/svn/gcc/trunk/libffi/src/ia64
svn://gcc.gnu.org/svn/gcc
2009-06-04T15:43:03.499507Z
148172
aph
138bc75d-0d04-0410-961f-82ee72b054a4
ffitarget.h
file
2009-06-10T05:25:03.000000Z
6705dee4ee4609cc805413bc439c20ae
2009-06-04T15:11:12.475454Z
148171
aph
1952
unix.S
file
2009-06-10T05:25:03.000000Z
8e5389d0a78a91c44ad3532ef97779da
2009-06-04T15:43:03.499507Z
148172
aph
11649
ffi.c
file
2009-06-10T05:25:03.000000Z
7ca86e7025e65dd69d1ed227e9fe964e
2009-06-04T15:43:03.499507Z
148172
aph
15326
ia64_flags.h
file
2009-06-10T05:25:03.000000Z
6598837388b91973b3e6193968357fdb
2009-06-04T15:11:12.475454Z
148171
aph
1949

View File

@@ -1,580 +0,0 @@
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1998, 2007, 2008 Red Hat, Inc.
Copyright (c) 2000 Hewlett Packard Company
IA64 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdbool.h>
#include <float.h>
#include "ia64_flags.h"
/* A 64-bit pointer value. In LP64 mode, this is effectively a plain
pointer. In ILP32 mode, it's a pointer that's been extended to
64 bits by "addp4". */
typedef void *PTR64 __attribute__((mode(DI)));
/* Memory image of fp register contents. This is the implementation
specific format used by ldf.fill/stf.spill. All we care about is
that it wants a 16 byte aligned slot. */
typedef struct
{
UINT64 x[2] __attribute__((aligned(16)));
} fpreg;
/* The stack layout given to ffi_call_unix and ffi_closure_unix_inner. */
struct ia64_args
{
fpreg fp_regs[8]; /* Contents of 8 fp arg registers. */
UINT64 gp_regs[8]; /* Contents of 8 gp arg registers. */
UINT64 other_args[]; /* Arguments passed on stack, variable size. */
};
/* Adjust ADDR, a pointer to an 8 byte slot, to point to the low LEN bytes. */
static inline void *
endian_adjust (void *addr, size_t len)
{
#ifdef __BIG_ENDIAN__
return addr + (8 - len);
#else
return addr;
#endif
}
/* Store VALUE to ADDR in the current cpu implementation's fp spill format.
This is a macro instead of a function, so that it works for all 3 floating
point types without type conversions. Type conversion to long double breaks
the denorm support. */
#define stf_spill(addr, value) \
asm ("stf.spill %0 = %1%P0" : "=m" (*addr) : "f"(value));
/* Load a value from ADDR, which is in the current cpu implementation's
fp spill format. As above, this must also be a macro. */
#define ldf_fill(result, addr) \
asm ("ldf.fill %0 = %1%P1" : "=f"(result) : "m"(*addr));
/* Return the size of the C type associated with with TYPE. Which will
be one of the FFI_IA64_TYPE_HFA_* values. */
static size_t
hfa_type_size (int type)
{
switch (type)
{
case FFI_IA64_TYPE_HFA_FLOAT:
return sizeof(float);
case FFI_IA64_TYPE_HFA_DOUBLE:
return sizeof(double);
case FFI_IA64_TYPE_HFA_LDOUBLE:
return sizeof(__float80);
default:
abort ();
}
}
/* Load from ADDR a value indicated by TYPE. Which will be one of
the FFI_IA64_TYPE_HFA_* values. */
static void
hfa_type_load (fpreg *fpaddr, int type, void *addr)
{
switch (type)
{
case FFI_IA64_TYPE_HFA_FLOAT:
stf_spill (fpaddr, *(float *) addr);
return;
case FFI_IA64_TYPE_HFA_DOUBLE:
stf_spill (fpaddr, *(double *) addr);
return;
case FFI_IA64_TYPE_HFA_LDOUBLE:
stf_spill (fpaddr, *(__float80 *) addr);
return;
default:
abort ();
}
}
/* Load VALUE into ADDR as indicated by TYPE. Which will be one of
the FFI_IA64_TYPE_HFA_* values. */
static void
hfa_type_store (int type, void *addr, fpreg *fpaddr)
{
switch (type)
{
case FFI_IA64_TYPE_HFA_FLOAT:
{
float result;
ldf_fill (result, fpaddr);
*(float *) addr = result;
break;
}
case FFI_IA64_TYPE_HFA_DOUBLE:
{
double result;
ldf_fill (result, fpaddr);
*(double *) addr = result;
break;
}
case FFI_IA64_TYPE_HFA_LDOUBLE:
{
__float80 result;
ldf_fill (result, fpaddr);
*(__float80 *) addr = result;
break;
}
default:
abort ();
}
}
/* Is TYPE a struct containing floats, doubles, or extended doubles,
all of the same fp type? If so, return the element type. Return
FFI_TYPE_VOID if not. */
static int
hfa_element_type (ffi_type *type, int nested)
{
int element = FFI_TYPE_VOID;
switch (type->type)
{
case FFI_TYPE_FLOAT:
/* We want to return VOID for raw floating-point types, but the
synthetic HFA type if we're nested within an aggregate. */
if (nested)
element = FFI_IA64_TYPE_HFA_FLOAT;
break;
case FFI_TYPE_DOUBLE:
/* Similarly. */
if (nested)
element = FFI_IA64_TYPE_HFA_DOUBLE;
break;
case FFI_TYPE_LONGDOUBLE:
/* Similarly, except that that HFA is true for double extended,
but not quad precision. Both have sizeof == 16, so tell the
difference based on the precision. */
if (LDBL_MANT_DIG == 64 && nested)
element = FFI_IA64_TYPE_HFA_LDOUBLE;
break;
case FFI_TYPE_STRUCT:
{
ffi_type **ptr = &type->elements[0];
for (ptr = &type->elements[0]; *ptr ; ptr++)
{
int sub_element = hfa_element_type (*ptr, 1);
if (sub_element == FFI_TYPE_VOID)
return FFI_TYPE_VOID;
if (element == FFI_TYPE_VOID)
element = sub_element;
else if (element != sub_element)
return FFI_TYPE_VOID;
}
}
break;
default:
return FFI_TYPE_VOID;
}
return element;
}
/* Perform machine dependent cif processing. */
ffi_status
ffi_prep_cif_machdep(ffi_cif *cif)
{
int flags;
/* Adjust cif->bytes to include space for the bits of the ia64_args frame
that preceeds the integer register portion. The estimate that the
generic bits did for the argument space required is good enough for the
integer component. */
cif->bytes += offsetof(struct ia64_args, gp_regs[0]);
if (cif->bytes < sizeof(struct ia64_args))
cif->bytes = sizeof(struct ia64_args);
/* Set the return type flag. */
flags = cif->rtype->type;
switch (cif->rtype->type)
{
case FFI_TYPE_LONGDOUBLE:
/* Leave FFI_TYPE_LONGDOUBLE as meaning double extended precision,
and encode quad precision as a two-word integer structure. */
if (LDBL_MANT_DIG != 64)
flags = FFI_IA64_TYPE_SMALL_STRUCT | (16 << 8);
break;
case FFI_TYPE_STRUCT:
{
size_t size = cif->rtype->size;
int hfa_type = hfa_element_type (cif->rtype, 0);
if (hfa_type != FFI_TYPE_VOID)
{
size_t nelts = size / hfa_type_size (hfa_type);
if (nelts <= 8)
flags = hfa_type | (size << 8);
}
else
{
if (size <= 32)
flags = FFI_IA64_TYPE_SMALL_STRUCT | (size << 8);
}
}
break;
default:
break;
}
cif->flags = flags;
return FFI_OK;
}
extern int ffi_call_unix (struct ia64_args *, PTR64, void (*)(void), UINT64);
void
ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
struct ia64_args *stack;
long i, avn, gpcount, fpcount;
ffi_type **p_arg;
FFI_ASSERT (cif->abi == FFI_UNIX);
/* If we have no spot for a return value, make one. */
if (rvalue == NULL && cif->rtype->type != FFI_TYPE_VOID)
rvalue = alloca (cif->rtype->size);
/* Allocate the stack frame. */
stack = alloca (cif->bytes);
gpcount = fpcount = 0;
avn = cif->nargs;
for (i = 0, p_arg = cif->arg_types; i < avn; i++, p_arg++)
{
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
stack->gp_regs[gpcount++] = *(SINT8 *)avalue[i];
break;
case FFI_TYPE_UINT8:
stack->gp_regs[gpcount++] = *(UINT8 *)avalue[i];
break;
case FFI_TYPE_SINT16:
stack->gp_regs[gpcount++] = *(SINT16 *)avalue[i];
break;
case FFI_TYPE_UINT16:
stack->gp_regs[gpcount++] = *(UINT16 *)avalue[i];
break;
case FFI_TYPE_SINT32:
stack->gp_regs[gpcount++] = *(SINT32 *)avalue[i];
break;
case FFI_TYPE_UINT32:
stack->gp_regs[gpcount++] = *(UINT32 *)avalue[i];
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
stack->gp_regs[gpcount++] = *(UINT64 *)avalue[i];
break;
case FFI_TYPE_POINTER:
stack->gp_regs[gpcount++] = (UINT64)(PTR64) *(void **)avalue[i];
break;
case FFI_TYPE_FLOAT:
if (gpcount < 8 && fpcount < 8)
stf_spill (&stack->fp_regs[fpcount++], *(float *)avalue[i]);
stack->gp_regs[gpcount++] = *(UINT32 *)avalue[i];
break;
case FFI_TYPE_DOUBLE:
if (gpcount < 8 && fpcount < 8)
stf_spill (&stack->fp_regs[fpcount++], *(double *)avalue[i]);
stack->gp_regs[gpcount++] = *(UINT64 *)avalue[i];
break;
case FFI_TYPE_LONGDOUBLE:
if (gpcount & 1)
gpcount++;
if (LDBL_MANT_DIG == 64 && gpcount < 8 && fpcount < 8)
stf_spill (&stack->fp_regs[fpcount++], *(__float80 *)avalue[i]);
memcpy (&stack->gp_regs[gpcount], avalue[i], 16);
gpcount += 2;
break;
case FFI_TYPE_STRUCT:
{
size_t size = (*p_arg)->size;
size_t align = (*p_arg)->alignment;
int hfa_type = hfa_element_type (*p_arg, 0);
FFI_ASSERT (align <= 16);
if (align == 16 && (gpcount & 1))
gpcount++;
if (hfa_type != FFI_TYPE_VOID)
{
size_t hfa_size = hfa_type_size (hfa_type);
size_t offset = 0;
size_t gp_offset = gpcount * 8;
while (fpcount < 8
&& offset < size
&& gp_offset < 8 * 8)
{
hfa_type_load (&stack->fp_regs[fpcount], hfa_type,
avalue[i] + offset);
offset += hfa_size;
gp_offset += hfa_size;
fpcount += 1;
}
}
memcpy (&stack->gp_regs[gpcount], avalue[i], size);
gpcount += (size + 7) / 8;
}
break;
default:
abort ();
}
}
ffi_call_unix (stack, rvalue, fn, cif->flags);
}
/* Closures represent a pair consisting of a function pointer, and
some user data. A closure is invoked by reinterpreting the closure
as a function pointer, and branching to it. Thus we can make an
interpreted function callable as a C function: We turn the
interpreter itself, together with a pointer specifying the
interpreted procedure, into a closure.
For IA64, function pointer are already pairs consisting of a code
pointer, and a gp pointer. The latter is needed to access global
variables. Here we set up such a pair as the first two words of
the closure (in the "trampoline" area), but we replace the gp
pointer with a pointer to the closure itself. We also add the real
gp pointer to the closure. This allows the function entry code to
both retrieve the user data, and to restire the correct gp pointer. */
extern void ffi_closure_unix ();
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
/* The layout of a function descriptor. A C function pointer really
points to one of these. */
struct ia64_fd
{
UINT64 code_pointer;
UINT64 gp;
};
struct ffi_ia64_trampoline_struct
{
UINT64 code_pointer; /* Pointer to ffi_closure_unix. */
UINT64 fake_gp; /* Pointer to closure, installed as gp. */
UINT64 real_gp; /* Real gp value. */
};
struct ffi_ia64_trampoline_struct *tramp;
struct ia64_fd *fd;
FFI_ASSERT (cif->abi == FFI_UNIX);
tramp = (struct ffi_ia64_trampoline_struct *)closure->tramp;
fd = (struct ia64_fd *)(void *)ffi_closure_unix;
tramp->code_pointer = fd->code_pointer;
tramp->real_gp = fd->gp;
tramp->fake_gp = (UINT64)(PTR64)codeloc;
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
UINT64
ffi_closure_unix_inner (ffi_closure *closure, struct ia64_args *stack,
void *rvalue, void *r8)
{
ffi_cif *cif;
void **avalue;
ffi_type **p_arg;
long i, avn, gpcount, fpcount;
cif = closure->cif;
avn = cif->nargs;
avalue = alloca (avn * sizeof (void *));
/* If the structure return value is passed in memory get that location
from r8 so as to pass the value directly back to the caller. */
if (cif->flags == FFI_TYPE_STRUCT)
rvalue = r8;
gpcount = fpcount = 0;
for (i = 0, p_arg = cif->arg_types; i < avn; i++, p_arg++)
{
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT8:
avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], 1);
break;
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT16:
avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], 2);
break;
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], 4);
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
avalue[i] = &stack->gp_regs[gpcount++];
break;
case FFI_TYPE_POINTER:
avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], sizeof(void*));
break;
case FFI_TYPE_FLOAT:
if (gpcount < 8 && fpcount < 8)
{
fpreg *addr = &stack->fp_regs[fpcount++];
float result;
avalue[i] = addr;
ldf_fill (result, addr);
*(float *)addr = result;
}
else
avalue[i] = endian_adjust(&stack->gp_regs[gpcount], 4);
gpcount++;
break;
case FFI_TYPE_DOUBLE:
if (gpcount < 8 && fpcount < 8)
{
fpreg *addr = &stack->fp_regs[fpcount++];
double result;
avalue[i] = addr;
ldf_fill (result, addr);
*(double *)addr = result;
}
else
avalue[i] = &stack->gp_regs[gpcount];
gpcount++;
break;
case FFI_TYPE_LONGDOUBLE:
if (gpcount & 1)
gpcount++;
if (LDBL_MANT_DIG == 64 && gpcount < 8 && fpcount < 8)
{
fpreg *addr = &stack->fp_regs[fpcount++];
__float80 result;
avalue[i] = addr;
ldf_fill (result, addr);
*(__float80 *)addr = result;
}
else
avalue[i] = &stack->gp_regs[gpcount];
gpcount += 2;
break;
case FFI_TYPE_STRUCT:
{
size_t size = (*p_arg)->size;
size_t align = (*p_arg)->alignment;
int hfa_type = hfa_element_type (*p_arg, 0);
FFI_ASSERT (align <= 16);
if (align == 16 && (gpcount & 1))
gpcount++;
if (hfa_type != FFI_TYPE_VOID)
{
size_t hfa_size = hfa_type_size (hfa_type);
size_t offset = 0;
size_t gp_offset = gpcount * 8;
void *addr = alloca (size);
avalue[i] = addr;
while (fpcount < 8
&& offset < size
&& gp_offset < 8 * 8)
{
hfa_type_store (hfa_type, addr + offset,
&stack->fp_regs[fpcount]);
offset += hfa_size;
gp_offset += hfa_size;
fpcount += 1;
}
if (offset < size)
memcpy (addr + offset, (char *)stack->gp_regs + gp_offset,
size - offset);
}
else
avalue[i] = &stack->gp_regs[gpcount];
gpcount += (size + 7) / 8;
}
break;
default:
abort ();
}
}
closure->fun (cif, rvalue, avalue, closure->user_data);
return cif->flags;
}

View File

@@ -1,50 +0,0 @@
/* -----------------------------------------------------------------*-C-*-
ffitarget.h - Copyright (c) 1996-2003 Red Hat, Inc.
Target configuration macros for IA-64.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef LIBFFI_TARGET_H
#define LIBFFI_TARGET_H
#ifndef LIBFFI_ASM
typedef unsigned long long ffi_arg;
typedef signed long long ffi_sarg;
typedef enum ffi_abi {
FFI_FIRST_ABI = 0,
FFI_UNIX, /* Linux and all Unix variants use the same conventions */
FFI_DEFAULT_ABI = FFI_UNIX,
FFI_LAST_ABI = FFI_DEFAULT_ABI + 1
} ffi_abi;
#endif
/* ---- Definitions for closures ----------------------------------------- */
#define FFI_CLOSURES 1
#define FFI_TRAMPOLINE_SIZE 24 /* Really the following struct, which */
/* can be interpreted as a C function */
/* descriptor: */
#endif

View File

@@ -1,40 +0,0 @@
/* -----------------------------------------------------------------------
ia64_flags.h - Copyright (c) 2000 Hewlett Packard Company
IA64/unix Foreign Function Interface
Original author: Hans Boehm, HP Labs
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* "Type" codes used between assembly and C. When used as a part of
a cfi->flags value, the low byte will be these extra type codes,
and bits 8-31 will be the actual size of the type. */
/* Small structures containing N words in integer registers. */
#define FFI_IA64_TYPE_SMALL_STRUCT (FFI_TYPE_LAST + 1)
/* Homogeneous Floating Point Aggregates (HFAs) which are returned
in FP registers. */
#define FFI_IA64_TYPE_HFA_FLOAT (FFI_TYPE_LAST + 2)
#define FFI_IA64_TYPE_HFA_DOUBLE (FFI_TYPE_LAST + 3)
#define FFI_IA64_TYPE_HFA_LDOUBLE (FFI_TYPE_LAST + 4)

View File

@@ -1,560 +0,0 @@
/* -----------------------------------------------------------------------
unix.S - Copyright (c) 1998, 2008 Red Hat, Inc.
Copyright (c) 2000 Hewlett Packard Company
IA64/unix Foreign Function Interface
Primary author: Hans Boehm, HP Labs
Loosely modeled on Cygnus code for other platforms.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#include "ia64_flags.h"
.pred.safe_across_calls p1-p5,p16-p63
.text
/* int ffi_call_unix (struct ia64_args *stack, PTR64 rvalue,
void (*fn)(void), int flags);
*/
.align 16
.global ffi_call_unix
.proc ffi_call_unix
ffi_call_unix:
.prologue
/* Bit o trickiness. We actually share a stack frame with ffi_call.
Rely on the fact that ffi_call uses a vframe and don't bother
tracking one here at all. */
.fframe 0
.save ar.pfs, r36 // loc0
alloc loc0 = ar.pfs, 4, 3, 8, 0
.save rp, loc1
mov loc1 = b0
.body
add r16 = 16, in0
mov loc2 = gp
mov r8 = in1
;;
/* Load up all of the argument registers. */
ldf.fill f8 = [in0], 32
ldf.fill f9 = [r16], 32
;;
ldf.fill f10 = [in0], 32
ldf.fill f11 = [r16], 32
;;
ldf.fill f12 = [in0], 32
ldf.fill f13 = [r16], 32
;;
ldf.fill f14 = [in0], 32
ldf.fill f15 = [r16], 24
;;
ld8 out0 = [in0], 16
ld8 out1 = [r16], 16
;;
ld8 out2 = [in0], 16
ld8 out3 = [r16], 16
;;
ld8 out4 = [in0], 16
ld8 out5 = [r16], 16
;;
ld8 out6 = [in0]
ld8 out7 = [r16]
;;
/* Deallocate the register save area from the stack frame. */
mov sp = in0
/* Call the target function. */
ld8 r16 = [in2], 8
;;
ld8 gp = [in2]
mov b6 = r16
br.call.sptk.many b0 = b6
;;
/* Dispatch to handle return value. */
mov gp = loc2
zxt1 r16 = in3
;;
mov ar.pfs = loc0
addl r18 = @ltoffx(.Lst_table), gp
;;
ld8.mov r18 = [r18], .Lst_table
mov b0 = loc1
;;
shladd r18 = r16, 3, r18
;;
ld8 r17 = [r18]
shr in3 = in3, 8
;;
add r17 = r17, r18
;;
mov b6 = r17
br b6
;;
.Lst_void:
br.ret.sptk.many b0
;;
.Lst_uint8:
zxt1 r8 = r8
;;
st8 [in1] = r8
br.ret.sptk.many b0
;;
.Lst_sint8:
sxt1 r8 = r8
;;
st8 [in1] = r8
br.ret.sptk.many b0
;;
.Lst_uint16:
zxt2 r8 = r8
;;
st8 [in1] = r8
br.ret.sptk.many b0
;;
.Lst_sint16:
sxt2 r8 = r8
;;
st8 [in1] = r8
br.ret.sptk.many b0
;;
.Lst_uint32:
zxt4 r8 = r8
;;
st8 [in1] = r8
br.ret.sptk.many b0
;;
.Lst_sint32:
sxt4 r8 = r8
;;
st8 [in1] = r8
br.ret.sptk.many b0
;;
.Lst_int64:
st8 [in1] = r8
br.ret.sptk.many b0
;;
.Lst_float:
stfs [in1] = f8
br.ret.sptk.many b0
;;
.Lst_double:
stfd [in1] = f8
br.ret.sptk.many b0
;;
.Lst_ldouble:
stfe [in1] = f8
br.ret.sptk.many b0
;;
.Lst_small_struct:
add sp = -16, sp
cmp.lt p6, p0 = 8, in3
cmp.lt p7, p0 = 16, in3
cmp.lt p8, p0 = 24, in3
;;
add r16 = 8, sp
add r17 = 16, sp
add r18 = 24, sp
;;
st8 [sp] = r8
(p6) st8 [r16] = r9
mov out0 = in1
(p7) st8 [r17] = r10
(p8) st8 [r18] = r11
mov out1 = sp
mov out2 = in3
br.call.sptk.many b0 = memcpy#
;;
mov ar.pfs = loc0
mov b0 = loc1
mov gp = loc2
br.ret.sptk.many b0
.Lst_hfa_float:
add r16 = 4, in1
cmp.lt p6, p0 = 4, in3
;;
stfs [in1] = f8, 8
(p6) stfs [r16] = f9, 8
cmp.lt p7, p0 = 8, in3
cmp.lt p8, p0 = 12, in3
;;
(p7) stfs [in1] = f10, 8
(p8) stfs [r16] = f11, 8
cmp.lt p9, p0 = 16, in3
cmp.lt p10, p0 = 20, in3
;;
(p9) stfs [in1] = f12, 8
(p10) stfs [r16] = f13, 8
cmp.lt p6, p0 = 24, in3
cmp.lt p7, p0 = 28, in3
;;
(p6) stfs [in1] = f14
(p7) stfs [r16] = f15
br.ret.sptk.many b0
;;
.Lst_hfa_double:
add r16 = 8, in1
cmp.lt p6, p0 = 8, in3
;;
stfd [in1] = f8, 16
(p6) stfd [r16] = f9, 16
cmp.lt p7, p0 = 16, in3
cmp.lt p8, p0 = 24, in3
;;
(p7) stfd [in1] = f10, 16
(p8) stfd [r16] = f11, 16
cmp.lt p9, p0 = 32, in3
cmp.lt p10, p0 = 40, in3
;;
(p9) stfd [in1] = f12, 16
(p10) stfd [r16] = f13, 16
cmp.lt p6, p0 = 48, in3
cmp.lt p7, p0 = 56, in3
;;
(p6) stfd [in1] = f14
(p7) stfd [r16] = f15
br.ret.sptk.many b0
;;
.Lst_hfa_ldouble:
add r16 = 16, in1
cmp.lt p6, p0 = 16, in3
;;
stfe [in1] = f8, 32
(p6) stfe [r16] = f9, 32
cmp.lt p7, p0 = 32, in3
cmp.lt p8, p0 = 48, in3
;;
(p7) stfe [in1] = f10, 32
(p8) stfe [r16] = f11, 32
cmp.lt p9, p0 = 64, in3
cmp.lt p10, p0 = 80, in3
;;
(p9) stfe [in1] = f12, 32
(p10) stfe [r16] = f13, 32
cmp.lt p6, p0 = 96, in3
cmp.lt p7, p0 = 112, in3
;;
(p6) stfe [in1] = f14
(p7) stfe [r16] = f15
br.ret.sptk.many b0
;;
.endp ffi_call_unix
.align 16
.global ffi_closure_unix
.proc ffi_closure_unix
#define FRAME_SIZE (8*16 + 8*8 + 8*16)
ffi_closure_unix:
.prologue
.save ar.pfs, r40 // loc0
alloc loc0 = ar.pfs, 8, 4, 4, 0
.fframe FRAME_SIZE
add r12 = -FRAME_SIZE, r12
.save rp, loc1
mov loc1 = b0
.save ar.unat, loc2
mov loc2 = ar.unat
.body
/* Retrieve closure pointer and real gp. */
#ifdef _ILP32
addp4 out0 = 0, gp
addp4 gp = 16, gp
#else
mov out0 = gp
add gp = 16, gp
#endif
;;
ld8 gp = [gp]
/* Spill all of the possible argument registers. */
add r16 = 16 + 8*16, sp
add r17 = 16 + 8*16 + 16, sp
;;
stf.spill [r16] = f8, 32
stf.spill [r17] = f9, 32
mov loc3 = gp
;;
stf.spill [r16] = f10, 32
stf.spill [r17] = f11, 32
;;
stf.spill [r16] = f12, 32
stf.spill [r17] = f13, 32
;;
stf.spill [r16] = f14, 32
stf.spill [r17] = f15, 24
;;
.mem.offset 0, 0
st8.spill [r16] = in0, 16
.mem.offset 8, 0
st8.spill [r17] = in1, 16
add out1 = 16 + 8*16, sp
;;
.mem.offset 0, 0
st8.spill [r16] = in2, 16
.mem.offset 8, 0
st8.spill [r17] = in3, 16
add out2 = 16, sp
;;
.mem.offset 0, 0
st8.spill [r16] = in4, 16
.mem.offset 8, 0
st8.spill [r17] = in5, 16
mov out3 = r8
;;
.mem.offset 0, 0
st8.spill [r16] = in6
.mem.offset 8, 0
st8.spill [r17] = in7
/* Invoke ffi_closure_unix_inner for the hard work. */
br.call.sptk.many b0 = ffi_closure_unix_inner
;;
/* Dispatch to handle return value. */
mov gp = loc3
zxt1 r16 = r8
;;
addl r18 = @ltoffx(.Lld_table), gp
mov ar.pfs = loc0
;;
ld8.mov r18 = [r18], .Lld_table
mov b0 = loc1
;;
shladd r18 = r16, 3, r18
mov ar.unat = loc2
;;
ld8 r17 = [r18]
shr r8 = r8, 8
;;
add r17 = r17, r18
add r16 = 16, sp
;;
mov b6 = r17
br b6
;;
.label_state 1
.Lld_void:
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_int:
.body
.copy_state 1
ld8 r8 = [r16]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_float:
.body
.copy_state 1
ldfs f8 = [r16]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_double:
.body
.copy_state 1
ldfd f8 = [r16]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_ldouble:
.body
.copy_state 1
ldfe f8 = [r16]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_small_struct:
.body
.copy_state 1
add r17 = 8, r16
cmp.lt p6, p0 = 8, r8
cmp.lt p7, p0 = 16, r8
cmp.lt p8, p0 = 24, r8
;;
ld8 r8 = [r16], 16
(p6) ld8 r9 = [r17], 16
;;
(p7) ld8 r10 = [r16]
(p8) ld8 r11 = [r17]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_hfa_float:
.body
.copy_state 1
add r17 = 4, r16
cmp.lt p6, p0 = 4, r8
;;
ldfs f8 = [r16], 8
(p6) ldfs f9 = [r17], 8
cmp.lt p7, p0 = 8, r8
cmp.lt p8, p0 = 12, r8
;;
(p7) ldfs f10 = [r16], 8
(p8) ldfs f11 = [r17], 8
cmp.lt p9, p0 = 16, r8
cmp.lt p10, p0 = 20, r8
;;
(p9) ldfs f12 = [r16], 8
(p10) ldfs f13 = [r17], 8
cmp.lt p6, p0 = 24, r8
cmp.lt p7, p0 = 28, r8
;;
(p6) ldfs f14 = [r16]
(p7) ldfs f15 = [r17]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_hfa_double:
.body
.copy_state 1
add r17 = 8, r16
cmp.lt p6, p0 = 8, r8
;;
ldfd f8 = [r16], 16
(p6) ldfd f9 = [r17], 16
cmp.lt p7, p0 = 16, r8
cmp.lt p8, p0 = 24, r8
;;
(p7) ldfd f10 = [r16], 16
(p8) ldfd f11 = [r17], 16
cmp.lt p9, p0 = 32, r8
cmp.lt p10, p0 = 40, r8
;;
(p9) ldfd f12 = [r16], 16
(p10) ldfd f13 = [r17], 16
cmp.lt p6, p0 = 48, r8
cmp.lt p7, p0 = 56, r8
;;
(p6) ldfd f14 = [r16]
(p7) ldfd f15 = [r17]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.Lld_hfa_ldouble:
.body
.copy_state 1
add r17 = 16, r16
cmp.lt p6, p0 = 16, r8
;;
ldfe f8 = [r16], 32
(p6) ldfe f9 = [r17], 32
cmp.lt p7, p0 = 32, r8
cmp.lt p8, p0 = 48, r8
;;
(p7) ldfe f10 = [r16], 32
(p8) ldfe f11 = [r17], 32
cmp.lt p9, p0 = 64, r8
cmp.lt p10, p0 = 80, r8
;;
(p9) ldfe f12 = [r16], 32
(p10) ldfe f13 = [r17], 32
cmp.lt p6, p0 = 96, r8
cmp.lt p7, p0 = 112, r8
;;
(p6) ldfe f14 = [r16]
(p7) ldfe f15 = [r17]
.restore sp
add sp = FRAME_SIZE, sp
br.ret.sptk.many b0
;;
.endp ffi_closure_unix
.section .rodata
.align 8
.Lst_table:
data8 @pcrel(.Lst_void) // FFI_TYPE_VOID
data8 @pcrel(.Lst_sint32) // FFI_TYPE_INT
data8 @pcrel(.Lst_float) // FFI_TYPE_FLOAT
data8 @pcrel(.Lst_double) // FFI_TYPE_DOUBLE
data8 @pcrel(.Lst_ldouble) // FFI_TYPE_LONGDOUBLE
data8 @pcrel(.Lst_uint8) // FFI_TYPE_UINT8
data8 @pcrel(.Lst_sint8) // FFI_TYPE_SINT8
data8 @pcrel(.Lst_uint16) // FFI_TYPE_UINT16
data8 @pcrel(.Lst_sint16) // FFI_TYPE_SINT16
data8 @pcrel(.Lst_uint32) // FFI_TYPE_UINT32
data8 @pcrel(.Lst_sint32) // FFI_TYPE_SINT32
data8 @pcrel(.Lst_int64) // FFI_TYPE_UINT64
data8 @pcrel(.Lst_int64) // FFI_TYPE_SINT64
data8 @pcrel(.Lst_void) // FFI_TYPE_STRUCT
data8 @pcrel(.Lst_int64) // FFI_TYPE_POINTER
data8 @pcrel(.Lst_small_struct) // FFI_IA64_TYPE_SMALL_STRUCT
data8 @pcrel(.Lst_hfa_float) // FFI_IA64_TYPE_HFA_FLOAT
data8 @pcrel(.Lst_hfa_double) // FFI_IA64_TYPE_HFA_DOUBLE
data8 @pcrel(.Lst_hfa_ldouble) // FFI_IA64_TYPE_HFA_LDOUBLE
.Lld_table:
data8 @pcrel(.Lld_void) // FFI_TYPE_VOID
data8 @pcrel(.Lld_int) // FFI_TYPE_INT
data8 @pcrel(.Lld_float) // FFI_TYPE_FLOAT
data8 @pcrel(.Lld_double) // FFI_TYPE_DOUBLE
data8 @pcrel(.Lld_ldouble) // FFI_TYPE_LONGDOUBLE
data8 @pcrel(.Lld_int) // FFI_TYPE_UINT8
data8 @pcrel(.Lld_int) // FFI_TYPE_SINT8
data8 @pcrel(.Lld_int) // FFI_TYPE_UINT16
data8 @pcrel(.Lld_int) // FFI_TYPE_SINT16
data8 @pcrel(.Lld_int) // FFI_TYPE_UINT32
data8 @pcrel(.Lld_int) // FFI_TYPE_SINT32
data8 @pcrel(.Lld_int) // FFI_TYPE_UINT64
data8 @pcrel(.Lld_int) // FFI_TYPE_SINT64
data8 @pcrel(.Lld_void) // FFI_TYPE_STRUCT
data8 @pcrel(.Lld_int) // FFI_TYPE_POINTER
data8 @pcrel(.Lld_small_struct) // FFI_IA64_TYPE_SMALL_STRUCT
data8 @pcrel(.Lld_hfa_float) // FFI_IA64_TYPE_HFA_FLOAT
data8 @pcrel(.Lld_hfa_double) // FFI_IA64_TYPE_HFA_DOUBLE
data8 @pcrel(.Lld_hfa_ldouble) // FFI_IA64_TYPE_HFA_LDOUBLE
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits
#endif