Import Tcl 8.5.15 (as of svn r89086)

This commit is contained in:
Zachary Ware
2017-09-04 14:22:48 -05:00
parent 4b29e0458f
commit 49cac229de
1522 changed files with 665741 additions and 6 deletions

View File

@@ -0,0 +1,103 @@
#include <tommath.h>
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* Fast (comba) multiplier
*
* This is the fast column-array [comba] multiplier. It is
* designed to compute the columns of the product first
* then handle the carries afterwards. This has the effect
* of making the nested loops that compute the columns very
* simple and schedulable on super-scalar processors.
*
* This has been modified to produce a variable number of
* digits of output so if say only a half-product is required
* you don't have to compute the upper half (a feature
* required for fast Barrett reduction).
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
register mp_word _W;
/* grow the destination as required */
if (c->alloc < digs) {
if ((res = mp_grow (c, digs)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
pa = MIN(digs, a->used + b->used);
/* clear the carry */
_W = 0;
for (ix = 0; ix < pa; ix++) {
int tx, ty;
int iy;
mp_digit *tmpx, *tmpy;
/* get offsets into the two bignums */
ty = MIN(b->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = b->dp + ty;
/* this is the number of times the loop will iterrate, essentially
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* execute loop */
for (iz = 0; iz < iy; ++iz) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* store term */
W[ix] = ((mp_digit)_W) & MP_MASK;
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = c->used;
c->used = pa;
{
register mp_digit *tmpc;
tmpc = c->dp;
for (ix = 0; ix < pa+1; ix++) {
/* now extract the previous digit [below the carry] */
*tmpc++ = W[ix];
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,110 @@
#include <tommath.h>
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* the jist of squaring...
* you do like mult except the offset of the tmpx [one that
* starts closer to zero] can't equal the offset of tmpy.
* So basically you set up iy like before then you min it with
* (ty-tx) so that it never happens. You double all those
* you add in the inner loop
After that loop you do the squares and add them in.
*/
int fast_s_mp_sqr (mp_int * a, mp_int * b)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY], *tmpx;
mp_word W1;
/* grow the destination as required */
pa = a->used + a->used;
if (b->alloc < pa) {
if ((res = mp_grow (b, pa)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
W1 = 0;
for (ix = 0; ix < pa; ix++) {
int tx, ty, iy;
mp_word _W;
mp_digit *tmpy;
/* clear counter */
_W = 0;
/* get offsets into the two bignums */
ty = MIN(a->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = a->dp + ty;
/* this is the number of times the loop will iterrate, essentially
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* now for squaring tx can never equal ty
* we halve the distance since they approach at a rate of 2x
* and we have to round because odd cases need to be executed
*/
iy = MIN(iy, (ty-tx+1)>>1);
/* execute loop */
for (iz = 0; iz < iy; iz++) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* double the inner product and add carry */
_W = _W + _W + W1;
/* even columns have the square term in them */
if ((ix&1) == 0) {
_W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
}
/* store it */
W[ix] = (mp_digit)(_W & MP_MASK);
/* make next carry */
W1 = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = b->used;
b->used = a->used+a->used;
{
mp_digit *tmpb;
tmpb = b->dp;
for (ix = 0; ix < pa; ix++) {
*tmpb++ = W[ix] & MP_MASK;
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpb++ = 0;
}
}
mp_clamp (b);
return MP_OKAY;
}
#endif

49
libtommath/bn_mp_add.c Normal file
View File

@@ -0,0 +1,49 @@
#include <tommath.h>
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
int sa, sb, res;
/* get sign of both inputs */
sa = a->sign;
sb = b->sign;
/* handle two cases, not four */
if (sa == sb) {
/* both positive or both negative */
/* add their magnitudes, copy the sign */
c->sign = sa;
res = s_mp_add (a, b, c);
} else {
/* one positive, the other negative */
/* subtract the one with the greater magnitude from */
/* the one of the lesser magnitude. The result gets */
/* the sign of the one with the greater magnitude. */
if (mp_cmp_mag (a, b) == MP_LT) {
c->sign = sb;
res = s_mp_sub (b, a, c);
} else {
c->sign = sa;
res = s_mp_sub (a, b, c);
}
}
return res;
}
#endif

109
libtommath/bn_mp_add_d.c Normal file
View File

@@ -0,0 +1,109 @@
#include <tommath.h>
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* single digit addition */
int
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
int res, ix, oldused;
mp_digit *tmpa, *tmpc, mu;
/* grow c as required */
if (c->alloc < a->used + 1) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* if a is negative and |a| >= b, call c = |a| - b */
if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
/* temporarily fix sign of a */
a->sign = MP_ZPOS;
/* c = |a| - b */
res = mp_sub_d(a, b, c);
/* fix signs */
a->sign = MP_NEG;
c->sign = (c->used) ? MP_NEG : MP_ZPOS;
/* clamp */
mp_clamp(c);
return res;
}
/* old number of used digits in c */
oldused = c->used;
/* sign always positive */
c->sign = MP_ZPOS;
/* source alias */
tmpa = a->dp;
/* destination alias */
tmpc = c->dp;
/* if a is positive */
if (a->sign == MP_ZPOS) {
/* add digit, after this we're propagating
* the carry.
*/
*tmpc = *tmpa++ + b;
mu = *tmpc >> DIGIT_BIT;
*tmpc++ &= MP_MASK;
/* now handle rest of the digits */
for (ix = 1; ix < a->used; ix++) {
*tmpc = *tmpa++ + mu;
mu = *tmpc >> DIGIT_BIT;
*tmpc++ &= MP_MASK;
}
/* set final carry */
ix++;
*tmpc++ = mu;
/* setup size */
c->used = a->used + 1;
} else {
/* a was negative and |a| < b */
c->used = 1;
/* the result is a single digit */
if (a->used == 1) {
*tmpc++ = b - a->dp[0];
} else {
*tmpc++ = b;
}
/* setup count so the clearing of oldused
* can fall through correctly
*/
ix = 1;
}
/* now zero to oldused */
while (ix++ < oldused) {
*tmpc++ = 0;
}
mp_clamp(c);
return MP_OKAY;
}
#endif

53
libtommath/bn_mp_and.c Normal file
View File

@@ -0,0 +1,53 @@
#include <tommath.h>
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* AND two ints together */
int
mp_and (mp_int * a, mp_int * b, mp_int * c)
{
int res, ix, px;
mp_int t, *x;
if (a->used > b->used) {
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
px = b->used;
x = b;
} else {
if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
return res;
}
px = a->used;
x = a;
}
for (ix = 0; ix < px; ix++) {
t.dp[ix] &= x->dp[ix];
}
/* zero digits above the last from the smallest mp_int */
for (; ix < t.used; ix++) {
t.dp[ix] = 0;
}
mp_clamp (&t);
mp_exch (c, &t);
mp_clear (&t);
return MP_OKAY;
}
#endif

40
libtommath/bn_mp_clamp.c Normal file
View File

@@ -0,0 +1,40 @@
#include <tommath.h>
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* trim unused digits
*
* This is used to ensure that leading zero digits are
* trimed and the leading "used" digit will be non-zero
* Typically very fast. Also fixes the sign if there
* are no more leading digits
*/
void
mp_clamp (mp_int * a)
{
/* decrease used while the most significant digit is
* zero.
*/
while (a->used > 0 && a->dp[a->used - 1] == 0) {
--(a->used);
}
/* reset the sign flag if used == 0 */
if (a->used == 0) {
a->sign = MP_ZPOS;
}
}
#endif

40
libtommath/bn_mp_clear.c Normal file
View File

@@ -0,0 +1,40 @@
#include <tommath.h>
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* clear one (frees) */
void
mp_clear (mp_int * a)
{
int i;
/* only do anything if a hasn't been freed previously */
if (a->dp != NULL) {
/* first zero the digits */
for (i = 0; i < a->used; i++) {
a->dp[i] = 0;
}
/* free ram */
XFREE(a->dp);
/* reset members to make debugging easier */
a->dp = NULL;
a->alloc = a->used = 0;
a->sign = MP_ZPOS;
}
}
#endif

View File

@@ -0,0 +1,30 @@
#include <tommath.h>
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
#include <stdarg.h>
void mp_clear_multi(mp_int *mp, ...)
{
mp_int* next_mp = mp;
va_list args;
va_start(args, mp);
while (next_mp != NULL) {
mp_clear(next_mp);
next_mp = va_arg(args, mp_int*);
}
va_end(args);
}
#endif

39
libtommath/bn_mp_cmp.c Normal file
View File

@@ -0,0 +1,39 @@
#include <tommath.h>
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* compare two ints (signed)*/
int
mp_cmp (mp_int * a, mp_int * b)
{
/* compare based on sign */
if (a->sign != b->sign) {
if (a->sign == MP_NEG) {
return MP_LT;
} else {
return MP_GT;
}
}
/* compare digits */
if (a->sign == MP_NEG) {
/* if negative compare opposite direction */
return mp_cmp_mag(b, a);
} else {
return mp_cmp_mag(a, b);
}
}
#endif

40
libtommath/bn_mp_cmp_d.c Normal file
View File

@@ -0,0 +1,40 @@
#include <tommath.h>
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* compare a digit */
int mp_cmp_d(mp_int * a, mp_digit b)
{
/* compare based on sign */
if (a->sign == MP_NEG) {
return MP_LT;
}
/* compare based on magnitude */
if (a->used > 1) {
return MP_GT;
}
/* compare the only digit of a to b */
if (a->dp[0] > b) {
return MP_GT;
} else if (a->dp[0] < b) {
return MP_LT;
} else {
return MP_EQ;
}
}
#endif

View File

@@ -0,0 +1,51 @@
#include <tommath.h>
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag (mp_int * a, mp_int * b)
{
int n;
mp_digit *tmpa, *tmpb;
/* compare based on # of non-zero digits */
if (a->used > b->used) {
return MP_GT;
}
if (a->used < b->used) {
return MP_LT;
}
/* alias for a */
tmpa = a->dp + (a->used - 1);
/* alias for b */
tmpb = b->dp + (a->used - 1);
/* compare based on digits */
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
if (*tmpa > *tmpb) {
return MP_GT;
}
if (*tmpa < *tmpb) {
return MP_LT;
}
}
return MP_EQ;
}
#endif

View File

@@ -0,0 +1,49 @@
#include <tommath.h>
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
static const int lnz[16] = {
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(mp_int *a)
{
int x;
mp_digit q, qq;
/* easy out */
if (mp_iszero(a) == 1) {
return 0;
}
/* scan lower digits until non-zero */
for (x = 0; x < a->used && a->dp[x] == 0; x++);
q = a->dp[x];
x *= DIGIT_BIT;
/* now scan this digit until a 1 is found */
if ((q & 1) == 0) {
do {
qq = q & 15;
x += lnz[qq];
q >>= 4;
} while (qq == 0);
}
return x;
}
#endif

64
libtommath/bn_mp_copy.c Normal file
View File

@@ -0,0 +1,64 @@
#include <tommath.h>
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* copy, b = a */
int
mp_copy (mp_int * a, mp_int * b)
{
int res, n;
/* if dst == src do nothing */
if (a == b) {
return MP_OKAY;
}
/* grow dest */
if (b->alloc < a->used) {
if ((res = mp_grow (b, a->used)) != MP_OKAY) {
return res;
}
}
/* zero b and copy the parameters over */
{
register mp_digit *tmpa, *tmpb;
/* pointer aliases */
/* source */
tmpa = a->dp;
/* destination */
tmpb = b->dp;
/* copy all the digits */
for (n = 0; n < a->used; n++) {
*tmpb++ = *tmpa++;
}
/* clear high digits */
for (; n < b->used; n++) {
*tmpb++ = 0;
}
}
/* copy used count and sign */
b->used = a->used;
b->sign = a->sign;
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,41 @@
#include <tommath.h>
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* returns the number of bits in an int */
int
mp_count_bits (mp_int * a)
{
int r;
mp_digit q;
/* shortcut */
if (a->used == 0) {
return 0;
}
/* get number of digits and add that */
r = (a->used - 1) * DIGIT_BIT;
/* take the last digit and count the bits in it */
q = a->dp[a->used - 1];
while (q > ((mp_digit) 0)) {
++r;
q >>= ((mp_digit) 1);
}
return r;
}
#endif

288
libtommath/bn_mp_div.c Normal file
View File

@@ -0,0 +1,288 @@
#include <tommath.h>
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
#ifdef BN_MP_DIV_SMALL
/* slower bit-bang division... also smaller */
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
mp_int ta, tb, tq, q;
int res, n, n2;
/* is divisor zero ? */
if (mp_iszero (b) == 1) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag (a, b) == MP_LT) {
if (d != NULL) {
res = mp_copy (a, d);
} else {
res = MP_OKAY;
}
if (c != NULL) {
mp_zero (c);
}
return res;
}
/* init our temps */
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
return res;
}
mp_set(&tq, 1);
n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto LBL_ERR;
}
while (n-- >= 0) {
if (mp_cmp(&tb, &ta) != MP_GT) {
if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
goto LBL_ERR;
}
}
if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
goto LBL_ERR;
}
}
/* now q == quotient and ta == remainder */
n = a->sign;
n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
if (c != NULL) {
mp_exch(c, &q);
c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
}
if (d != NULL) {
mp_exch(d, &ta);
d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
}
LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return res;
}
#else
/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
mp_int q, x, y, t1, t2;
int res, n, t, i, norm, neg;
/* is divisor zero ? */
if (mp_iszero (b) == 1) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag (a, b) == MP_LT) {
if (d != NULL) {
res = mp_copy (a, d);
} else {
res = MP_OKAY;
}
if (c != NULL) {
mp_zero (c);
}
return res;
}
if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
return res;
}
q.used = a->used + 2;
if ((res = mp_init (&t1)) != MP_OKAY) {
goto LBL_Q;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
goto LBL_T2;
}
if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
goto LBL_X;
}
/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
x.sign = y.sign = MP_ZPOS;
/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
norm = mp_count_bits(&y) % DIGIT_BIT;
if (norm < (int)(DIGIT_BIT-1)) {
norm = (DIGIT_BIT-1) - norm;
if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
goto LBL_Y;
}
} else {
norm = 0;
}
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
n = x.used - 1;
t = y.used - 1;
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
goto LBL_Y;
}
while (mp_cmp (&x, &y) != MP_LT) {
++(q.dp[n - t]);
if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
goto LBL_Y;
}
}
/* reset y by shifting it back down */
mp_rshd (&y, n - t);
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
if (i > x.used) {
continue;
}
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
} else {
mp_word tmp;
tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
tmp |= ((mp_word) x.dp[i - 1]);
tmp /= ((mp_word) y.dp[t]);
if (tmp > (mp_word) MP_MASK)
tmp = MP_MASK;
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
*/
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
do {
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
/* find left hand */
mp_zero (&t1);
t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
t1.dp[1] = y.dp[t];
t1.used = 2;
if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto LBL_Y;
}
/* find right hand */
t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
t2.dp[2] = x.dp[i];
t2.used = 3;
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
goto LBL_Y;
}
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (x.sign == MP_NEG) {
if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
goto LBL_Y;
}
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
}
}
/* now q is the quotient and x is the remainder
* [which we have to normalize]
*/
/* get sign before writing to c */
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
if (c != NULL) {
mp_clamp (&q);
mp_exch (&q, c);
c->sign = neg;
}
if (d != NULL) {
mp_div_2d (&x, norm, &x, NULL);
mp_exch (&x, d);
}
res = MP_OKAY;
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
LBL_Q:mp_clear (&q);
return res;
}
#endif
#endif

64
libtommath/bn_mp_div_2.c Normal file
View File

@@ -0,0 +1,64 @@
#include <tommath.h>
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* b = a/2 */
int mp_div_2(mp_int * a, mp_int * b)
{
int x, res, oldused;
/* copy */
if (b->alloc < a->used) {
if ((res = mp_grow (b, a->used)) != MP_OKAY) {
return res;
}
}
oldused = b->used;
b->used = a->used;
{
register mp_digit r, rr, *tmpa, *tmpb;
/* source alias */
tmpa = a->dp + b->used - 1;
/* dest alias */
tmpb = b->dp + b->used - 1;
/* carry */
r = 0;
for (x = b->used - 1; x >= 0; x--) {
/* get the carry for the next iteration */
rr = *tmpa & 1;
/* shift the current digit, add in carry and store */
*tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
/* forward carry to next iteration */
r = rr;
}
/* zero excess digits */
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
}
}
b->sign = a->sign;
mp_clamp (b);
return MP_OKAY;
}
#endif

93
libtommath/bn_mp_div_2d.c Normal file
View File

@@ -0,0 +1,93 @@
#include <tommath.h>
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
{
mp_digit D, r, rr;
int x, res;
mp_int t;
/* if the shift count is <= 0 then we do no work */
if (b <= 0) {
res = mp_copy (a, c);
if (d != NULL) {
mp_zero (d);
}
return res;
}
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
/* get the remainder */
if (d != NULL) {
if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
}
/* copy */
if ((res = mp_copy (a, c)) != MP_OKAY) {
mp_clear (&t);
return res;
}
/* shift by as many digits in the bit count */
if (b >= (int)DIGIT_BIT) {
mp_rshd (c, b / DIGIT_BIT);
}
/* shift any bit count < DIGIT_BIT */
D = (mp_digit) (b % DIGIT_BIT);
if (D != 0) {
register mp_digit *tmpc, mask, shift;
/* mask */
mask = (((mp_digit)1) << D) - 1;
/* shift for lsb */
shift = DIGIT_BIT - D;
/* alias */
tmpc = c->dp + (c->used - 1);
/* carry */
r = 0;
for (x = c->used - 1; x >= 0; x--) {
/* get the lower bits of this word in a temp */
rr = *tmpc & mask;
/* shift the current word and mix in the carry bits from the previous word */
*tmpc = (*tmpc >> D) | (r << shift);
--tmpc;
/* set the carry to the carry bits of the current word found above */
r = rr;
}
}
mp_clamp (c);
if (d != NULL) {
mp_exch (&t, d);
}
mp_clear (&t);
return MP_OKAY;
}
#endif

75
libtommath/bn_mp_div_3.c Normal file
View File

@@ -0,0 +1,75 @@
#include <tommath.h>
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* divide by three (based on routine from MPI and the GMP manual) */
int
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
mp_int q;
mp_word w, t;
mp_digit b;
int res, ix;
/* b = 2**DIGIT_BIT / 3 */
b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
if (w >= 3) {
/* multiply w by [1/3] */
t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
/* now subtract 3 * [w/3] from w, to get the remainder */
w -= t+t+t;
/* fixup the remainder as required since
* the optimization is not exact.
*/
while (w >= 3) {
t += 1;
w -= 3;
}
} else {
t = 0;
}
q.dp[ix] = (mp_digit)t;
}
/* [optional] store the remainder */
if (d != NULL) {
*d = (mp_digit)w;
}
/* [optional] store the quotient */
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
return res;
}
#endif

110
libtommath/bn_mp_div_d.c Normal file
View File

@@ -0,0 +1,110 @@
#include <tommath.h>
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
static int s_is_power_of_two(mp_digit b, int *p)
{
int x;
/* quick out - if (b & (b-1)) isn't zero, b isn't a power of two */
if ((b==0) || (b & (b-1))) {
return 0;
}
for (x = 1; x < DIGIT_BIT; x++) {
if (b == (((mp_digit)1)<<x)) {
*p = x;
return 1;
}
}
return 0;
}
/* single digit division (based on routine from MPI) */
int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
{
mp_int q;
mp_word w;
mp_digit t;
int res, ix;
/* cannot divide by zero */
if (b == 0) {
return MP_VAL;
}
/* quick outs */
if (b == 1 || mp_iszero(a) == 1) {
if (d != NULL) {
*d = 0;
}
if (c != NULL) {
return mp_copy(a, c);
}
return MP_OKAY;
}
/* power of two ? */
if (s_is_power_of_two(b, &ix) == 1) {
if (d != NULL) {
*d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
}
if (c != NULL) {
return mp_div_2d(a, ix, c, NULL);
}
return MP_OKAY;
}
#ifdef BN_MP_DIV_3_C
/* three? */
if (b == 3) {
return mp_div_3(a, c, d);
}
#endif
/* no easy answer [c'est la vie]. Just division */
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
if (w >= b) {
t = (mp_digit)(w / b);
w -= ((mp_word)t) * ((mp_word)b);
} else {
t = 0;
}
q.dp[ix] = (mp_digit)t;
}
if (d != NULL) {
*d = (mp_digit)w;
}
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
return res;
}
#endif

30
libtommath/bn_mp_exch.c Normal file
View File

@@ -0,0 +1,30 @@
#include <tommath.h>
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* swap the elements of two integers, for cases where you can't simply swap the
* mp_int pointers around
*/
void
mp_exch (mp_int * a, mp_int * b)
{
mp_int t;
t = *a;
*a = *b;
*b = t;
}
#endif

53
libtommath/bn_mp_expt_d.c Normal file
View File

@@ -0,0 +1,53 @@
#include <tommath.h>
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* calculate c = a**b using a square-multiply algorithm */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
int res, x;
mp_int g;
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
return res;
}
/* set initial result */
mp_set (c, 1);
for (x = 0; x < (int) DIGIT_BIT; x++) {
/* square */
if ((res = mp_sqr (c, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
/* if the bit is set multiply */
if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
}
/* shift to next bit */
b <<= 1;
}
mp_clear (&g);
return MP_OKAY;
}
#endif

53
libtommath/bn_mp_grow.c Normal file
View File

@@ -0,0 +1,53 @@
#include <tommath.h>
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* grow as required */
int mp_grow (mp_int * a, int size)
{
int i;
mp_digit *tmp;
/* if the alloc size is smaller alloc more ram */
if (a->alloc < size) {
/* ensure there are always at least MP_PREC digits extra on top */
size += (MP_PREC * 2) - (size % MP_PREC);
/* reallocate the array a->dp
*
* We store the return in a temporary variable
* in case the operation failed we don't want
* to overwrite the dp member of a.
*/
tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
if (tmp == NULL) {
/* reallocation failed but "a" is still valid [can be freed] */
return MP_MEM;
}
/* reallocation succeeded so set a->dp */
a->dp = tmp;
/* zero excess digits */
i = a->alloc;
a->alloc = size;
for (; i < a->alloc; i++) {
a->dp[i] = 0;
}
}
return MP_OKAY;
}
#endif

42
libtommath/bn_mp_init.c Normal file
View File

@@ -0,0 +1,42 @@
#include <tommath.h>
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* init a new mp_int */
int mp_init (mp_int * a)
{
int i;
/* allocate memory required and clear it */
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
if (a->dp == NULL) {
return MP_MEM;
}
/* set the digits to zero */
for (i = 0; i < MP_PREC; i++) {
a->dp[i] = 0;
}
/* set the used to zero, allocated digits to the default precision
* and sign to positive */
a->used = 0;
a->alloc = MP_PREC;
a->sign = MP_ZPOS;
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,28 @@
#include <tommath.h>
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, mp_int * b)
{
int res;
if ((res = mp_init (a)) != MP_OKAY) {
return res;
}
return mp_copy (b, a);
}
#endif

View File

@@ -0,0 +1,55 @@
#include <tommath.h>
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
#include <stdarg.h>
int mp_init_multi(mp_int *mp, ...)
{
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
int n = 0; /* Number of ok inits */
mp_int* cur_arg = mp;
va_list args;
va_start(args, mp); /* init args to next argument from caller */
while (cur_arg != NULL) {
if (mp_init(cur_arg) != MP_OKAY) {
/* Oops - error! Back-track and mp_clear what we already
succeeded in init-ing, then return error.
*/
va_list clean_args;
/* end the current list */
va_end(args);
/* now start cleaning up */
cur_arg = mp;
va_start(clean_args, mp);
while (n--) {
mp_clear(cur_arg);
cur_arg = va_arg(clean_args, mp_int*);
}
va_end(clean_args);
res = MP_MEM;
break;
}
n++;
cur_arg = va_arg(args, mp_int*);
}
va_end(args);
return res; /* Assumed ok, if error flagged above. */
}
#endif

View File

@@ -0,0 +1,28 @@
#include <tommath.h>
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
mp_set(a, b);
return err;
}
#endif

View File

@@ -0,0 +1,27 @@
#include <tommath.h>
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
return mp_set_int(a, b);
}
#endif

View File

@@ -0,0 +1,44 @@
#include <tommath.h>
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* init an mp_init for a given size */
int mp_init_size (mp_int * a, int size)
{
int x;
/* pad size so there are always extra digits */
size += (MP_PREC * 2) - (size % MP_PREC);
/* alloc mem */
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
if (a->dp == NULL) {
return MP_MEM;
}
/* set the members */
a->used = 0;
a->alloc = size;
a->sign = MP_ZPOS;
/* zero the digits */
for (x = 0; x < size; x++) {
a->dp[x] = 0;
}
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,163 @@
#include <tommath.h>
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* c = |a| * |b| using Karatsuba Multiplication using
* three half size multiplications
*
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
* let n represent half of the number of digits in
* the min(a,b)
*
* a = a1 * B**n + a0
* b = b1 * B**n + b0
*
* Then, a * b =>
a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
*
* Note that a1b1 and a0b0 are used twice and only need to be
* computed once. So in total three half size (half # of
* digit) multiplications are performed, a0b0, a1b1 and
* (a1+b1)(a0+b0)
*
* Note that a multiplication of half the digits requires
* 1/4th the number of single precision multiplications so in
* total after one call 25% of the single precision multiplications
* are saved. Note also that the call to mp_mul can end up back
* in this function if the a0, a1, b0, or b1 are above the threshold.
* This is known as divide-and-conquer and leads to the famous
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
* the standard O(N**2) that the baseline/comba methods use.
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;
/* default the return code to an error */
err = MP_MEM;
/* min # of digits */
B = MIN (a->used, b->used);
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
goto X0;
if (mp_init_size (&y0, B) != MP_OKAY)
goto X1;
if (mp_init_size (&y1, b->used - B) != MP_OKAY)
goto Y0;
/* init temps */
if (mp_init_size (&t1, B * 2) != MP_OKAY)
goto Y1;
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
goto X0Y0;
/* now shift the digits */
x0.used = y0.used = B;
x1.used = a->used - B;
y1.used = b->used - B;
{
register int x;
register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
/* we copy the digits directly instead of using higher level functions
* since we also need to shift the digits
*/
tmpa = a->dp;
tmpb = b->dp;
tmpx = x0.dp;
tmpy = y0.dp;
for (x = 0; x < B; x++) {
*tmpx++ = *tmpa++;
*tmpy++ = *tmpb++;
}
tmpx = x1.dp;
for (x = B; x < a->used; x++) {
*tmpx++ = *tmpa++;
}
tmpy = y1.dp;
for (x = B; x < b->used; x++) {
*tmpy++ = *tmpb++;
}
}
/* only need to clamp the lower words since by definition the
* upper words x1/y1 must have a known number of digits
*/
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
/* after this x0 is no longer required, free temp [x0==t2]! */
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
/* now calc x1+x0 and y1+y0 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x1 - x0 */
if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
goto X1Y1; /* t2 = y1 - y0 */
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
/* add x0y0 */
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
goto X1Y1; /* t2 = x0y0 + x1y1 */
if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
goto X1Y1; /* x1y1 = x1y1 << 2*B */
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 */
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
/* Algorithm succeeded set the return code to MP_OKAY */
err = MP_OKAY;
X1Y1:mp_clear (&x1y1);
X0Y0:mp_clear (&x0y0);
T1:mp_clear (&t1);
Y1:mp_clear (&y1);
Y0:mp_clear (&y0);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
#endif

View File

@@ -0,0 +1,117 @@
#include <tommath.h>
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* Karatsuba squaring, computes b = a*a using three
* half size squarings
*
* See comments of karatsuba_mul for details. It
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
err = MP_MEM;
/* min # of digits */
B = a->used;
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
goto X0;
/* init temps */
if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
goto X1;
if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
goto T2;
if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
goto X0X0;
{
register int x;
register mp_digit *dst, *src;
src = a->dp;
/* now shift the digits */
dst = x0.dp;
for (x = 0; x < B; x++) {
*dst++ = *src++;
}
dst = x1.dp;
for (x = B; x < a->used; x++) {
*dst++ = *src++;
}
}
x0.used = B;
x1.used = a->used - B;
mp_clamp (&x0);
/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
goto X1X1; /* x0x0 = x0*x0 */
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
goto X1X1; /* x1x1 = x1*x1 */
/* now calc (x1+x0)**2 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1X1; /* t1 = x1 - x0 */
if (mp_sqr (&t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
/* add x0y0 */
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
goto X1X1; /* t2 = x0x0 + x1x1 */
if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
goto X1X1; /* x1x1 = x1x1 << 2*B */
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 */
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
err = MP_OKAY;
X1X1:mp_clear (&x1x1);
X0X0:mp_clear (&x0x0);
T2:mp_clear (&t2);
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
#endif

63
libtommath/bn_mp_lshd.c Normal file
View File

@@ -0,0 +1,63 @@
#include <tommath.h>
#ifdef BN_MP_LSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* shift left a certain amount of digits */
int mp_lshd (mp_int * a, int b)
{
int x, res;
/* if its less than zero return */
if (b <= 0) {
return MP_OKAY;
}
/* grow to fit the new digits */
if (a->alloc < a->used + b) {
if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
return res;
}
}
{
register mp_digit *top, *bottom;
/* increment the used by the shift amount then copy upwards */
a->used += b;
/* top */
top = a->dp + a->used - 1;
/* base */
bottom = a->dp + a->used - 1 - b;
/* much like mp_rshd this is implemented using a sliding window
* except the window goes the otherway around. Copying from
* the bottom to the top. see bn_mp_rshd.c for more info.
*/
for (x = a->used - 1; x >= b; x--) {
*top-- = *bottom--;
}
/* zero the lower digits */
top = a->dp;
for (x = 0; x < b; x++) {
*top++ = 0;
}
}
return MP_OKAY;
}
#endif

44
libtommath/bn_mp_mod.c Normal file
View File

@@ -0,0 +1,44 @@
#include <tommath.h>
#ifdef BN_MP_MOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* c = a mod b, 0 <= c < b */
int
mp_mod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int t;
int res;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
mp_clear (&t);
return res;
}
if (t.sign != b->sign) {
res = mp_add (b, &t, c);
} else {
res = MP_OKAY;
mp_exch (&t, c);
}
mp_clear (&t);
return res;
}
#endif

51
libtommath/bn_mp_mod_2d.c Normal file
View File

@@ -0,0 +1,51 @@
#include <tommath.h>
#ifdef BN_MP_MOD_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* calc a value mod 2**b */
int
mp_mod_2d (mp_int * a, int b, mp_int * c)
{
int x, res;
/* if b is <= 0 then zero the int */
if (b <= 0) {
mp_zero (c);
return MP_OKAY;
}
/* if the modulus is larger than the value than return */
if (b >= (int) (a->used * DIGIT_BIT)) {
res = mp_copy (a, c);
return res;
}
/* copy */
if ((res = mp_copy (a, c)) != MP_OKAY) {
return res;
}
/* zero digits above the last digit of the modulus */
for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
c->dp[x] = 0;
}
/* clear the digit that is not completely outside/inside the modulus */
c->dp[b / DIGIT_BIT] &=
(mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
mp_clamp (c);
return MP_OKAY;
}
#endif

62
libtommath/bn_mp_mul.c Normal file
View File

@@ -0,0 +1,62 @@
#include <tommath.h>
#ifdef BN_MP_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* high level multiplication (handles sign) */
int mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
/* use Toom-Cook? */
#ifdef BN_MP_TOOM_MUL_C
if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
res = mp_toom_mul(a, b, c);
} else
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
/* use Karatsuba? */
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
} else
#endif
{
/* can we use the fast multiplier?
*
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
int digs = a->used + b->used + 1;
#ifdef BN_FAST_S_MP_MUL_DIGS_C
if ((digs < MP_WARRAY) &&
MIN(a->used, b->used) <=
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
} else
#endif
#ifdef BN_S_MP_MUL_DIGS_C
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
#else
res = MP_VAL;
#endif
}
c->sign = (c->used > 0) ? neg : MP_ZPOS;
return res;
}
#endif

78
libtommath/bn_mp_mul_2.c Normal file
View File

@@ -0,0 +1,78 @@
#include <tommath.h>
#ifdef BN_MP_MUL_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* b = a*2 */
int mp_mul_2(mp_int * a, mp_int * b)
{
int x, res, oldused;
/* grow to accomodate result */
if (b->alloc < a->used + 1) {
if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
return res;
}
}
oldused = b->used;
b->used = a->used;
{
register mp_digit r, rr, *tmpa, *tmpb;
/* alias for source */
tmpa = a->dp;
/* alias for dest */
tmpb = b->dp;
/* carry */
r = 0;
for (x = 0; x < a->used; x++) {
/* get what will be the *next* carry bit from the
* MSB of the current digit
*/
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
/* now shift up this digit, add in the carry [from the previous] */
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
/* copy the carry that would be from the source
* digit into the next iteration
*/
r = rr;
}
/* new leading digit? */
if (r != 0) {
/* add a MSB which is always 1 at this point */
*tmpb = 1;
++(b->used);
}
/* now zero any excess digits on the destination
* that we didn't write to
*/
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
}
}
b->sign = a->sign;
return MP_OKAY;
}
#endif

81
libtommath/bn_mp_mul_2d.c Normal file
View File

@@ -0,0 +1,81 @@
#include <tommath.h>
#ifdef BN_MP_MUL_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* shift left by a certain bit count */
int mp_mul_2d (mp_int * a, int b, mp_int * c)
{
mp_digit d;
int res;
/* copy */
if (a != c) {
if ((res = mp_copy (a, c)) != MP_OKAY) {
return res;
}
}
if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
return res;
}
}
/* shift by as many digits in the bit count */
if (b >= (int)DIGIT_BIT) {
if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
return res;
}
}
/* shift any bit count < DIGIT_BIT */
d = (mp_digit) (b % DIGIT_BIT);
if (d != 0) {
register mp_digit *tmpc, shift, mask, r, rr;
register int x;
/* bitmask for carries */
mask = (((mp_digit)1) << d) - 1;
/* shift for msbs */
shift = DIGIT_BIT - d;
/* alias */
tmpc = c->dp;
/* carry */
r = 0;
for (x = 0; x < c->used; x++) {
/* get the higher bits of the current word */
rr = (*tmpc >> shift) & mask;
/* shift the current word and OR in the carry */
*tmpc = ((*tmpc << d) | r) & MP_MASK;
++tmpc;
/* set the carry to the carry bits of the current word */
r = rr;
}
/* set final carry */
if (r != 0) {
c->dp[(c->used)++] = r;
}
}
mp_clamp (c);
return MP_OKAY;
}
#endif

75
libtommath/bn_mp_mul_d.c Normal file
View File

@@ -0,0 +1,75 @@
#include <tommath.h>
#ifdef BN_MP_MUL_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* multiply by a digit */
int
mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
{
mp_digit u, *tmpa, *tmpc;
mp_word r;
int ix, res, olduse;
/* make sure c is big enough to hold a*b */
if (c->alloc < a->used + 1) {
if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* get the original destinations used count */
olduse = c->used;
/* set the sign */
c->sign = a->sign;
/* alias for a->dp [source] */
tmpa = a->dp;
/* alias for c->dp [dest] */
tmpc = c->dp;
/* zero carry */
u = 0;
/* compute columns */
for (ix = 0; ix < a->used; ix++) {
/* compute product and carry sum for this term */
r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
/* mask off higher bits to get a single digit */
*tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
/* send carry into next iteration */
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* store final carry [if any] and increment ix offset */
*tmpc++ = u;
++ix;
/* now zero digits above the top */
while (ix++ < olduse) {
*tmpc++ = 0;
}
/* set used count */
c->used = a->used + 1;
mp_clamp(c);
return MP_OKAY;
}
#endif

36
libtommath/bn_mp_neg.c Normal file
View File

@@ -0,0 +1,36 @@
#include <tommath.h>
#ifdef BN_MP_NEG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* b = -a */
int mp_neg (mp_int * a, mp_int * b)
{
int res;
if (a != b) {
if ((res = mp_copy (a, b)) != MP_OKAY) {
return res;
}
}
if (mp_iszero(b) != MP_YES) {
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
} else {
b->sign = MP_ZPOS;
}
return MP_OKAY;
}
#endif

46
libtommath/bn_mp_or.c Normal file
View File

@@ -0,0 +1,46 @@
#include <tommath.h>
#ifdef BN_MP_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* OR two ints together */
int mp_or (mp_int * a, mp_int * b, mp_int * c)
{
int res, ix, px;
mp_int t, *x;
if (a->used > b->used) {
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
px = b->used;
x = b;
} else {
if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
return res;
}
px = a->used;
x = a;
}
for (ix = 0; ix < px; ix++) {
t.dp[ix] |= x->dp[ix];
}
mp_clamp (&t);
mp_exch (c, &t);
mp_clear (&t);
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,83 @@
#include <tommath.h>
#ifdef BN_MP_RADIX_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* returns size of ASCII reprensentation */
int mp_radix_size (mp_int * a, int radix, int *size)
{
int res, digs;
mp_int t;
mp_digit d;
*size = 0;
/* special case for binary */
if (radix == 2) {
*size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
return MP_OKAY;
}
/* make sure the radix is in range */
if (radix < 2 || radix > 64) {
return MP_VAL;
}
if (mp_iszero(a) == MP_YES) {
*size = 2;
return MP_OKAY;
}
/* digs is the digit count */
digs = 0;
/* if it's negative add one for the sign */
if (a->sign == MP_NEG) {
++digs;
}
/* init a copy of the input */
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
/* force temp to positive */
t.sign = MP_ZPOS;
/* fetch out all of the digits */
while (mp_iszero (&t) == MP_NO) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
++digs;
}
mp_clear (&t);
/*
* return digs + 1, the 1 is for the NULL byte that would be required.
* mp_toradix_n requires a minimum of 3 bytes, so never report less than
* that.
*/
if ( digs >= 2 ) {
*size = digs + 1;
} else {
*size = 3;
}
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,20 @@
#include <tommath.h>
#ifdef BN_MP_RADIX_SMAP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* chars used in radix conversions */
const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#endif

View File

@@ -0,0 +1,88 @@
#include <tommath.h>
#ifdef BN_MP_READ_RADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* read a string [ASCII] in a given radix */
int mp_read_radix (mp_int * a, const char *str, int radix)
{
int y, res, neg;
char ch;
/* zero the digit bignum */
mp_zero(a);
/* make sure the radix is ok */
if (radix < 2 || radix > 64) {
return MP_VAL;
}
/* if the leading digit is a
* minus set the sign to negative.
*/
if (*str == '-') {
++str;
neg = MP_NEG;
} else {
neg = MP_ZPOS;
}
/* set the integer to the default of zero */
mp_zero (a);
/* process each digit of the string */
while (*str) {
/* if the radix < 36 the conversion is case insensitive
* this allows numbers like 1AB and 1ab to represent the same value
* [e.g. in hex]
*/
ch = (char) ((radix < 36) ? toupper ((unsigned char) *str) : *str);
for (y = 0; y < 64; y++) {
if (ch == mp_s_rmap[y]) {
break;
}
}
/* if the char was found in the map
* and is less than the given radix add it
* to the number, otherwise exit the loop.
*/
if (y < radix) {
if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
return res;
}
if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
return res;
}
} else {
break;
}
++str;
}
/* if an illegal character was found, fail. */
if ( *str != '\0' ) {
mp_zero( a );
return MP_VAL;
}
/* set the sign only if a != 0 */
if (mp_iszero(a) != 1) {
a->sign = neg;
}
return MP_OKAY;
}
#endif

68
libtommath/bn_mp_rshd.c Normal file
View File

@@ -0,0 +1,68 @@
#include <tommath.h>
#ifdef BN_MP_RSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* shift right a certain amount of digits */
void mp_rshd (mp_int * a, int b)
{
int x;
/* if b <= 0 then ignore it */
if (b <= 0) {
return;
}
/* if b > used then simply zero it and return */
if (a->used <= b) {
mp_zero (a);
return;
}
{
register mp_digit *bottom, *top;
/* shift the digits down */
/* bottom */
bottom = a->dp;
/* top [offset into digits] */
top = a->dp + b;
/* this is implemented as a sliding window where
* the window is b-digits long and digits from
* the top of the window are copied to the bottom
*
* e.g.
b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
/\ | ---->
\-------------------/ ---->
*/
for (x = 0; x < (a->used - b); x++) {
*bottom++ = *top++;
}
/* zero the top digits */
for (; x < a->used; x++) {
*bottom++ = 0;
}
}
/* remove excess digits */
a->used -= b;
}
#endif

25
libtommath/bn_mp_set.c Normal file
View File

@@ -0,0 +1,25 @@
#include <tommath.h>
#ifdef BN_MP_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* set to a digit */
void mp_set (mp_int * a, mp_digit b)
{
mp_zero (a);
a->dp[0] = b & MP_MASK;
a->used = (a->dp[0] != 0) ? 1 : 0;
}
#endif

View File

@@ -0,0 +1,44 @@
#include <tommath.h>
#ifdef BN_MP_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
{
int x, res;
mp_zero (a);
/* set four bits at a time */
for (x = 0; x < 8; x++) {
/* shift the number up four bits */
if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
return res;
}
/* OR in the top four bits of the source */
a->dp[0] |= (b >> 28) & 15;
/* shift the source up to the next four bits */
b <<= 4;
/* ensure that digits are not clamped off */
a->used += 1;
}
mp_clamp (a);
return MP_OKAY;
}
#endif

36
libtommath/bn_mp_shrink.c Normal file
View File

@@ -0,0 +1,36 @@
#include <tommath.h>
#ifdef BN_MP_SHRINK_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* shrink a bignum */
int mp_shrink (mp_int * a)
{
mp_digit *tmp;
int used = 1;
if(a->used > 0)
used = a->used;
if (a->alloc != used) {
if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) {
return MP_MEM;
}
a->dp = tmp;
a->alloc = used;
}
return MP_OKAY;
}
#endif

54
libtommath/bn_mp_sqr.c Normal file
View File

@@ -0,0 +1,54 @@
#include <tommath.h>
#ifdef BN_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* computes b = a*a */
int
mp_sqr (mp_int * a, mp_int * b)
{
int res;
#ifdef BN_MP_TOOM_SQR_C
/* use Toom-Cook? */
if (a->used >= TOOM_SQR_CUTOFF) {
res = mp_toom_sqr(a, b);
/* Karatsuba? */
} else
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
if (a->used >= KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
} else
#endif
{
#ifdef BN_FAST_S_MP_SQR_C
/* can we use the fast comba multiplier? */
if ((a->used * 2 + 1) < MP_WARRAY &&
a->used <
(1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
res = fast_s_mp_sqr (a, b);
} else
#endif
#ifdef BN_S_MP_SQR_C
res = s_mp_sqr (a, b);
#else
res = MP_VAL;
#endif
}
b->sign = MP_ZPOS;
return res;
}
#endif

142
libtommath/bn_mp_sqrt.c Normal file
View File

@@ -0,0 +1,142 @@
#include <tommath.h>
#ifdef BN_MP_SQRT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
#ifndef NO_FLOATING_POINT
#include <math.h>
#endif
/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(mp_int *arg, mp_int *ret)
{
int res;
mp_int t1,t2;
int i, j, k;
#ifndef NO_FLOATING_POINT
volatile double d;
mp_digit dig;
#endif
/* must be positive */
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* easy out */
if (mp_iszero(arg) == MP_YES) {
mp_zero(ret);
return MP_OKAY;
}
i = (arg->used / 2) - 1;
j = 2 * i;
if ((res = mp_init_size(&t1, i+2)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto E2;
}
for (k = 0; k < i; ++k) {
t1.dp[k] = (mp_digit) 0;
}
#ifndef NO_FLOATING_POINT
/* Estimate the square root using the hardware floating point unit. */
d = 0.0;
for (k = arg->used-1; k >= j; --k) {
d = ldexp(d, DIGIT_BIT) + (double) (arg->dp[k]);
}
/*
* At this point, d is the nearest floating point number to the most
* significant 1 or 2 mp_digits of arg. Extract its square root.
*/
d = sqrt(d);
/* dig is the most significant mp_digit of the square root */
dig = (mp_digit) ldexp(d, -DIGIT_BIT);
/*
* If the most significant digit is nonzero, find the next digit down
* by subtracting DIGIT_BIT times thie most significant digit.
* Subtract one from the result so that our initial estimate is always
* low.
*/
if (dig) {
t1.used = i+2;
d -= ldexp((double) dig, DIGIT_BIT);
if (d >= 1.0) {
t1.dp[i+1] = dig;
t1.dp[i] = ((mp_digit) d) - 1;
} else {
t1.dp[i+1] = dig-1;
t1.dp[i] = MP_DIGIT_MAX;
}
} else {
t1.used = i+1;
t1.dp[i] = ((mp_digit) d) - 1;
}
#else
/* Estimate the square root as having 1 in the most significant place. */
t1.used = i + 2;
t1.dp[i+1] = (mp_digit) 1;
t1.dp[i] = (mp_digit) 0;
#endif
/* t1 > 0 */
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* And now t1 > sqrt(arg) */
do {
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* t1 >= sqrt(arg) >= t2 at this point */
} while (mp_cmp_mag(&t1,&t2) == MP_GT);
mp_exch(&t1,ret);
E1: mp_clear(&t2);
E2: mp_clear(&t1);
return res;
}
#endif

55
libtommath/bn_mp_sub.c Normal file
View File

@@ -0,0 +1,55 @@
#include <tommath.h>
#ifdef BN_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* high level subtraction (handles signs) */
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
int sa, sb, res;
sa = a->sign;
sb = b->sign;
if (sa != sb) {
/* subtract a negative from a positive, OR */
/* subtract a positive from a negative. */
/* In either case, ADD their magnitudes, */
/* and use the sign of the first number. */
c->sign = sa;
res = s_mp_add (a, b, c);
} else {
/* subtract a positive from a positive, OR */
/* subtract a negative from a negative. */
/* First, take the difference between their */
/* magnitudes, then... */
if (mp_cmp_mag (a, b) != MP_LT) {
/* Copy the sign from the first */
c->sign = sa;
/* The first has a larger or equal magnitude */
res = s_mp_sub (a, b, c);
} else {
/* The result has the *opposite* sign from */
/* the first number. */
c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
/* The second has a larger magnitude */
res = s_mp_sub (b, a, c);
}
}
return res;
}
#endif

89
libtommath/bn_mp_sub_d.c Normal file
View File

@@ -0,0 +1,89 @@
#include <tommath.h>
#ifdef BN_MP_SUB_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* single digit subtraction */
int
mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
{
mp_digit *tmpa, *tmpc, mu;
int res, ix, oldused;
/* grow c as required */
if (c->alloc < a->used + 1) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* if a is negative just do an unsigned
* addition [with fudged signs]
*/
if (a->sign == MP_NEG) {
a->sign = MP_ZPOS;
res = mp_add_d(a, b, c);
a->sign = c->sign = MP_NEG;
/* clamp */
mp_clamp(c);
return res;
}
/* setup regs */
oldused = c->used;
tmpa = a->dp;
tmpc = c->dp;
/* if a <= b simply fix the single digit */
if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
if (a->used == 1) {
*tmpc++ = b - *tmpa;
} else {
*tmpc++ = b;
}
ix = 1;
/* negative/1digit */
c->sign = MP_NEG;
c->used = 1;
} else {
/* positive/size */
c->sign = MP_ZPOS;
c->used = a->used;
/* subtract first digit */
*tmpc = *tmpa++ - b;
mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
*tmpc++ &= MP_MASK;
/* handle rest of the digits */
for (ix = 1; ix < a->used; ix++) {
*tmpc = *tmpa++ - mu;
mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
*tmpc++ &= MP_MASK;
}
}
/* zero excess digits */
while (ix++ < oldused) {
*tmpc++ = 0;
}
mp_clamp(c);
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,44 @@
#include <tommath.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
int x, res;
mp_int t;
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
x = 0;
while (mp_iszero (&t) == 0) {
#ifndef MP_8BIT
b[x++] = (unsigned char) (t.dp[0] & 255);
#else
b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
#endif
if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
mp_clear (&t);
return res;
}
}
bn_reverse (b, x);
mp_clear (&t);
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,27 @@
#include <tommath.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
return MP_VAL;
}
*outlen = mp_unsigned_bin_size(a);
return mp_to_unsigned_bin(a, b);
}
#endif

280
libtommath/bn_mp_toom_mul.c Normal file
View File

@@ -0,0 +1,280 @@
#include <tommath.h>
#ifdef BN_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* multiplication using the Toom-Cook 3-way algorithm
*
* Much more complicated than Karatsuba but has a lower
* asymptotic running time of O(N**1.464). This algorithm is
* only particularly useful on VERY large inputs
* (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
int res, B;
/* init temps */
if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
&a0, &a1, &a2, &b0, &b1,
&b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
return res;
}
/* B */
B = MIN(a->used, b->used) / 3;
/* a = a2 * B**2 + a1 * B + a0 */
if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(a, &a1)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a1, B);
mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a2, B*2);
/* b = b2 * B**2 + b1 * B + b0 */
if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(b, &b1)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&b1, B);
mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
if ((res = mp_copy(b, &b2)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&b2, B*2);
/* w0 = a0*b0 */
if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
goto ERR;
}
/* w4 = a2 * b2 */
if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
goto ERR;
}
/* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
goto ERR;
}
/* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
goto ERR;
}
/* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
goto ERR;
}
/* now solve the matrix
0 0 0 0 1
1 2 4 8 16
1 1 1 1 1
16 8 4 2 1
1 0 0 0 0
using 12 subtractions, 4 shifts,
2 small divisions and 1 small multiplication
*/
/* r1 - r4 */
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r0 */
if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/2 */
if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3/2 */
if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
goto ERR;
}
/* r2 - r0 - r4 */
if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1 - 8r0 */
if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - 8r4 */
if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
goto ERR;
}
/* 3r2 - r1 - r3 */
if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/3 */
if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
goto ERR;
}
/* r3/3 */
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
goto ERR;
}
/* at this point shift W[n] by B*n */
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
&a0, &a1, &a2, &b0, &b1,
&b2, &tmp1, &tmp2, NULL);
return res;
}
#endif

222
libtommath/bn_mp_toom_sqr.c Normal file
View File

@@ -0,0 +1,222 @@
#include <tommath.h>
#ifdef BN_MP_TOOM_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* squaring using Toom-Cook 3-way algorithm */
int
mp_toom_sqr(mp_int *a, mp_int *b)
{
mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
int res, B;
/* init temps */
if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
return res;
}
/* B */
B = a->used / 3;
/* a = a2 * B**2 + a1 * B + a0 */
if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(a, &a1)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a1, B);
mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a2, B*2);
/* w0 = a0*a0 */
if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
goto ERR;
}
/* w4 = a2 * a2 */
if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
goto ERR;
}
/* w1 = (a2 + 2(a1 + 2a0))**2 */
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
goto ERR;
}
/* w3 = (a0 + 2(a1 + 2a2))**2 */
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
goto ERR;
}
/* w2 = (a2 + a1 + a0)**2 */
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
goto ERR;
}
/* now solve the matrix
0 0 0 0 1
1 2 4 8 16
1 1 1 1 1
16 8 4 2 1
1 0 0 0 0
using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
*/
/* r1 - r4 */
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r0 */
if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/2 */
if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3/2 */
if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
goto ERR;
}
/* r2 - r0 - r4 */
if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1 - 8r0 */
if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - 8r4 */
if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
goto ERR;
}
/* 3r2 - r1 - r3 */
if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/3 */
if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
goto ERR;
}
/* r3/3 */
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
goto ERR;
}
/* at this point shift W[n] by B*n */
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
return res;
}
#endif

View File

@@ -0,0 +1,84 @@
#include <tommath.h>
#ifdef BN_MP_TORADIX_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* stores a bignum as a ASCII string in a given radix (2..64)
*
* Stores upto maxlen-1 chars and always a NULL byte
*/
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
int res, digs;
mp_int t;
mp_digit d;
char *_s = str;
/* check range of the maxlen, radix */
if (maxlen < 2 || radix < 2 || radix > 64) {
return MP_VAL;
}
/* quick out if its zero */
if (mp_iszero(a) == MP_YES) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
/* if it is negative output a - */
if (t.sign == MP_NEG) {
/* we have to reverse our digits later... but not the - sign!! */
++_s;
/* store the flag and mark the number as positive */
*str++ = '-';
t.sign = MP_ZPOS;
/* subtract a char */
--maxlen;
}
digs = 0;
while (mp_iszero (&t) == 0) {
if (--maxlen < 1) {
/* no more room */
break;
}
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
*str++ = mp_s_rmap[d];
++digs;
}
/* reverse the digits of the string. In this case _s points
* to the first digit [exluding the sign] of the number
*/
bn_reverse ((unsigned char *)_s, digs);
/* append a NULL so the string is properly terminated */
*str = '\0';
mp_clear (&t);
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,24 @@
#include <tommath.h>
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
{
int size = mp_count_bits (a);
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}
#endif

47
libtommath/bn_mp_xor.c Normal file
View File

@@ -0,0 +1,47 @@
#include <tommath.h>
#ifdef BN_MP_XOR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* XOR two ints together */
int
mp_xor (mp_int * a, mp_int * b, mp_int * c)
{
int res, ix, px;
mp_int t, *x;
if (a->used > b->used) {
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
px = b->used;
x = b;
} else {
if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
return res;
}
px = a->used;
x = a;
}
for (ix = 0; ix < px; ix++) {
t.dp[ix] ^= x->dp[ix];
}
mp_clamp (&t);
mp_exch (c, &t);
mp_clear (&t);
return MP_OKAY;
}
#endif

32
libtommath/bn_mp_zero.c Normal file
View File

@@ -0,0 +1,32 @@
#include <tommath.h>
#ifdef BN_MP_ZERO_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* set to zero */
void mp_zero (mp_int * a)
{
int n;
mp_digit *tmp;
a->sign = MP_ZPOS;
a->used = 0;
tmp = a->dp;
for (n = 0; n < a->alloc; n++) {
*tmp++ = 0;
}
}
#endif

35
libtommath/bn_reverse.c Normal file
View File

@@ -0,0 +1,35 @@
#include <tommath.h>
#ifdef BN_REVERSE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* reverse an array, used for radix code */
void
bn_reverse (unsigned char *s, int len)
{
int ix, iy;
unsigned char t;
ix = 0;
iy = len - 1;
while (ix < iy) {
t = s[ix];
s[ix] = s[iy];
s[iy] = t;
++ix;
--iy;
}
}
#endif

105
libtommath/bn_s_mp_add.c Normal file
View File

@@ -0,0 +1,105 @@
#include <tommath.h>
#ifdef BN_S_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
mp_int *x;
int olduse, res, min, max;
/* find sizes, we let |a| <= |b| which means we have to sort
* them. "x" will point to the input with the most digits
*/
if (a->used > b->used) {
min = b->used;
max = a->used;
x = a;
} else {
min = a->used;
max = b->used;
x = b;
}
/* init result */
if (c->alloc < max + 1) {
if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
return res;
}
}
/* get old used digit count and set new one */
olduse = c->used;
c->used = max + 1;
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
/* alias for digit pointers */
/* first input */
tmpa = a->dp;
/* second input */
tmpb = b->dp;
/* destination */
tmpc = c->dp;
/* zero the carry */
u = 0;
for (i = 0; i < min; i++) {
/* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
*tmpc = *tmpa++ + *tmpb++ + u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)DIGIT_BIT);
/* take away carry bit from T[i] */
*tmpc++ &= MP_MASK;
}
/* now copy higher words if any, that is in A+B
* if A or B has more digits add those in
*/
if (min != max) {
for (; i < max; i++) {
/* T[i] = X[i] + U */
*tmpc = x->dp[i] + u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)DIGIT_BIT);
/* take away carry bit from T[i] */
*tmpc++ &= MP_MASK;
}
}
/* add carry */
*tmpc++ = u;
/* clear digits above oldused */
for (i = c->used; i < olduse; i++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
#endif

View File

@@ -0,0 +1,86 @@
#include <tommath.h>
#ifdef BN_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* multiplies |a| * |b| and only computes upto digs digits of result
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;
mp_digit u;
mp_word r;
mp_digit tmpx, *tmpt, *tmpy;
/* can we use the fast multiplier? */
if (((digs) < MP_WARRAY) &&
MIN (a->used, b->used) <
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
return fast_s_mp_mul_digs (a, b, c, digs);
}
if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
return res;
}
t.used = digs;
/* compute the digits of the product directly */
pa = a->used;
for (ix = 0; ix < pa; ix++) {
/* set the carry to zero */
u = 0;
/* limit ourselves to making digs digits of output */
pb = MIN (b->used, digs - ix);
/* setup some aliases */
/* copy of the digit from a used within the nested loop */
tmpx = a->dp[ix];
/* an alias for the destination shifted ix places */
tmpt = t.dp + ix;
/* an alias for the digits of b */
tmpy = b->dp;
/* compute the columns of the output and propagate the carry */
for (iy = 0; iy < pb; iy++) {
/* compute the column as a mp_word */
r = ((mp_word)*tmpt) +
((mp_word)tmpx) * ((mp_word)*tmpy++) +
((mp_word) u);
/* the new column is the lower part of the result */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
/* get the carry word from the result */
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* set carry if it is placed below digs */
if (ix + iy < digs) {
*tmpt = u;
}
}
mp_clamp (&t);
mp_exch (&t, c);
mp_clear (&t);
return MP_OKAY;
}
#endif

80
libtommath/bn_s_mp_sqr.c Normal file
View File

@@ -0,0 +1,80 @@
#include <tommath.h>
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr (mp_int * a, mp_int * b)
{
mp_int t;
int res, ix, iy, pa;
mp_word r;
mp_digit u, tmpx, *tmpt;
pa = a->used;
if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
return res;
}
/* default used is maximum possible size */
t.used = 2*pa + 1;
for (ix = 0; ix < pa; ix++) {
/* first calculate the digit at 2*ix */
/* calculate double precision result */
r = ((mp_word) t.dp[2*ix]) +
((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
/* store lower part in result */
t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
/* get the carry */
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
/* left hand side of A[ix] * A[iy] */
tmpx = a->dp[ix];
/* alias for where to store the results */
tmpt = t.dp + (2*ix + 1);
for (iy = ix + 1; iy < pa; iy++) {
/* first calculate the product */
r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
/* now calculate the double precision result, note we use
* addition instead of *2 since it's easier to optimize
*/
r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
/* store lower part */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
/* get carry */
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
}
/* propagate upwards */
while (u != ((mp_digit) 0)) {
r = ((mp_word) *tmpt) + ((mp_word) u);
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
}
}
mp_clamp (&t);
mp_exch (&t, b);
mp_clear (&t);
return MP_OKAY;
}
#endif

85
libtommath/bn_s_mp_sub.c Normal file
View File

@@ -0,0 +1,85 @@
#include <tommath.h>
#ifdef BN_S_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int
s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
int olduse, res, min, max;
/* find sizes */
min = b->used;
max = a->used;
/* init result */
if (c->alloc < max) {
if ((res = mp_grow (c, max)) != MP_OKAY) {
return res;
}
}
olduse = c->used;
c->used = max;
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
/* alias for digit pointers */
tmpa = a->dp;
tmpb = b->dp;
tmpc = c->dp;
/* set carry to zero */
u = 0;
for (i = 0; i < min; i++) {
/* T[i] = A[i] - B[i] - U */
*tmpc = *tmpa++ - *tmpb++ - u;
/* U = carry bit of T[i]
* Note this saves performing an AND operation since
* if a carry does occur it will propagate all the way to the
* MSB. As a result a single shift is enough to get the carry
*/
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
}
/* now copy higher words if any, e.g. if A has more digits than B */
for (; i < max; i++) {
/* T[i] = A[i] - U */
*tmpc = *tmpa++ - u;
/* U = carry bit of T[i] */
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
}
/* clear digits above used (since we may not have grown result above) */
for (i = c->used; i < olduse; i++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
#endif

32
libtommath/bncore.c Normal file
View File

@@ -0,0 +1,32 @@
#include <tommath.h>
#ifdef BNCORE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
/* Known optimal configurations
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
AMD Athlon64 /GCC v3.4.4 / 80/ 120/LTM 0.35
*/
int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 120, /* Min. number of digits before Karatsuba squaring is used. */
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
TOOM_SQR_CUTOFF = 400;
#endif

579
libtommath/tommath.h Normal file
View File

@@ -0,0 +1,579 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
#ifndef BN_H_
#define BN_H_
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>
#include <tommath_class.h>
#ifndef MIN
#define MIN(x,y) ((x)<(y)?(x):(y))
#endif
#ifndef MAX
#define MAX(x,y) ((x)>(y)?(x):(y))
#endif
#ifdef __cplusplus
extern "C" {
/* C++ compilers don't like assigning void * to mp_digit * */
#define OPT_CAST(x) (x *)
#else
/* C on the other hand doesn't care */
#define OPT_CAST(x)
#endif
/* detect 64-bit mode if possible */
#if defined(__x86_64__)
#if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
#define MP_64BIT
#endif
#endif
/* some default configurations.
*
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
* A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
*
* At the very least a mp_digit must be able to hold 7 bits
* [any size beyond that is ok provided it doesn't overflow the data type]
*/
#ifdef MP_8BIT
typedef unsigned char mp_digit;
typedef unsigned short mp_word;
#elif defined(MP_16BIT)
typedef unsigned short mp_digit;
typedef unsigned long mp_word;
#elif defined(MP_64BIT)
/* for GCC only on supported platforms */
#ifndef CRYPT
typedef unsigned long long ulong64;
typedef signed long long long64;
#endif
typedef unsigned long mp_digit;
typedef unsigned long mp_word __attribute__ ((mode(TI)));
#define DIGIT_BIT 60
#else
/* this is the default case, 28-bit digits */
/* this is to make porting into LibTomCrypt easier :-) */
#ifndef CRYPT
#if defined(_MSC_VER) || defined(__BORLANDC__)
typedef unsigned __int64 ulong64;
typedef signed __int64 long64;
#else
typedef unsigned long long ulong64;
typedef signed long long long64;
#endif
#endif
typedef unsigned long mp_digit;
typedef ulong64 mp_word;
#ifdef MP_31BIT
/* this is an extension that uses 31-bit digits */
#define DIGIT_BIT 31
#else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
#define DIGIT_BIT 28
#define MP_28BIT
#endif
#endif
/* define heap macros */
#ifndef CRYPT
/* default to libc stuff */
#ifndef XMALLOC
#define XMALLOC malloc
#define XFREE free
#define XREALLOC realloc
#define XCALLOC calloc
#else
/* prototypes for our heap functions */
extern void *XMALLOC(size_t n);
extern void *XREALLOC(void *p, size_t n);
extern void *XCALLOC(size_t n, size_t s);
extern void XFREE(void *p);
#endif
#endif
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
#define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */
#endif
#define MP_DIGIT_BIT DIGIT_BIT
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX MP_MASK
/* equalities */
#define MP_LT -1 /* less than */
#define MP_EQ 0 /* equal to */
#define MP_GT 1 /* greater than */
#define MP_ZPOS 0 /* positive integer */
#define MP_NEG 1 /* negative */
#define MP_OKAY 0 /* ok result */
#define MP_MEM -2 /* out of mem */
#define MP_VAL -3 /* invalid input */
#define MP_RANGE MP_VAL
#define MP_YES 1 /* yes response */
#define MP_NO 0 /* no response */
/* Primality generation flags */
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
typedef int mp_err;
/* you'll have to tune these... */
extern int KARATSUBA_MUL_CUTOFF,
KARATSUBA_SQR_CUTOFF,
TOOM_MUL_CUTOFF,
TOOM_SQR_CUTOFF;
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
/* default precision */
#ifndef MP_PREC
#ifndef MP_LOW_MEM
#define MP_PREC 32 /* default digits of precision */
#else
#define MP_PREC 8 /* default digits of precision */
#endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
/* the infamous mp_int structure */
typedef struct {
int used, alloc, sign;
mp_digit *dp;
} mp_int;
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
#define USED(m) ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m) ((m)->sign)
/* error code to char* string */
char *mp_error_to_string(int code);
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
int mp_init(mp_int *a);
/* free a bignum */
void mp_clear(mp_int *a);
/* init a null terminated series of arguments */
int mp_init_multi(mp_int *mp, ...);
/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...);
/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);
/* shrink ram required for a bignum */
int mp_shrink(mp_int *a);
/* grow an int to a given size */
int mp_grow(mp_int *a, int size);
/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
/* set to zero */
void mp_zero(mp_int *a);
/* set to a digit */
void mp_set(mp_int *a, mp_digit b);
/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);
/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);
/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b);
/* initialize and set 32-bit value */
int mp_init_set_int (mp_int * a, unsigned long b);
/* copy, b = a */
int mp_copy(mp_int *a, mp_int *b);
/* inits and copies, a = b */
int mp_init_copy(mp_int *a, mp_int *b);
/* trim unused digits */
void mp_clamp(mp_int *a);
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);
/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);
/* c = a / 2**b */
int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
/* b = a/2 */
int mp_div_2(mp_int *a, mp_int *b);
/* c = a * 2**b */
int mp_mul_2d(mp_int *a, int b, mp_int *c);
/* b = a*2 */
int mp_mul_2(mp_int *a, mp_int *b);
/* c = a mod 2**d */
int mp_mod_2d(mp_int *a, int b, mp_int *c);
/* computes a = 2**b */
int mp_2expt(mp_int *a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(mp_int *a);
/* I Love Earth! */
/* makes a pseudo-random int of a given size */
int mp_rand(mp_int *a, int digits);
/* ---> binary operations <--- */
/* c = a XOR b */
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
/* c = a OR b */
int mp_or(mp_int *a, mp_int *b, mp_int *c);
/* c = a AND b */
int mp_and(mp_int *a, mp_int *b, mp_int *c);
/* ---> Basic arithmetic <--- */
/* b = -a */
int mp_neg(mp_int *a, mp_int *b);
/* b = |a| */
int mp_abs(mp_int *a, mp_int *b);
/* compare a to b */
int mp_cmp(mp_int *a, mp_int *b);
/* compare |a| to |b| */
int mp_cmp_mag(mp_int *a, mp_int *b);
/* c = a + b */
int mp_add(mp_int *a, mp_int *b, mp_int *c);
/* c = a - b */
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
/* c = a * b */
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
/* b = a*a */
int mp_sqr(mp_int *a, mp_int *b);
/* a/b => cb + d == a */
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
/* c = a mod b, 0 <= c < b */
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
/* compare against a single digit */
int mp_cmp_d(mp_int *a, mp_digit b);
/* c = a + b */
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
/* c = a - b */
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
/* c = a * b */
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
/* a/3 => 3c + d == a */
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
/* c = a mod b, 0 <= c < b */
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
/* d = a - b (mod c) */
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
/* d = a * b (mod c) */
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
/* c = a * a (mod b) */
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
/* c = (a, b) */
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
/* special sqrt algo */
int mp_sqrt(mp_int *arg, mp_int *ret);
/* is number a square? */
int mp_is_square(mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
int mp_jacobi(mp_int *a, mp_int *n, int *c);
/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
/* setups the montgomery reduction */
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
/* returns 1 if a is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a);
/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(mp_int *a, mp_digit *d);
/* reduces a modulo b using the Diminished Radix method */
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
/* returns true if a can be reduced with mp_reduce_2k */
int mp_reduce_is_2k(mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
int mp_reduce_is_2k_l(mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
/* d = a**b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
/* ---> Primes <--- */
/* number of primes */
#ifdef MP_8BIT
#define PRIME_SIZE 31
#else
#define PRIME_SIZE 256
#endif
/* table of first PRIME_SIZE primes */
extern const mp_digit ltm_prime_tab[];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
int mp_prime_is_divisible(mp_int *a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
int mp_prime_rabin_miller_trials(int size);
/* performs t rounds of Miller-Rabin on "a" using the first
* t prime bases. Also performs an initial sieve of trial
* division. Determines if "a" is prime with probability
* of error no more than (1/4)**t.
*
* Sets result to 1 if probably prime, 0 otherwise
*/
int mp_prime_is_prime(mp_int *a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
* The prime generated will be larger than 2^(8*size).
*/
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
/* ---> radix conversion <--- */
int mp_count_bits(mp_int *a);
int mp_unsigned_bin_size(mp_int *a);
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
int mp_read_radix(mp_int *a, const char *str, int radix);
int mp_toradix(mp_int *a, char *str, int radix);
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
int mp_radix_size(mp_int *a, int radix, int *size);
int mp_fread(mp_int *a, int radix, FILE *stream);
int mp_fwrite(mp_int *a, int radix, FILE *stream);
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp) mp_signed_bin_size(mp)
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
/* lowlevel functions, do not call! */
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int fast_s_mp_sqr(mp_int *a, mp_int *b);
int s_mp_sqr(mp_int *a, mp_int *b);
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
int mp_toom_sqr(mp_int *a, mp_int *b);
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
void bn_reverse(unsigned char *s, int len);
extern const char *mp_s_rmap;
#ifdef __cplusplus
}
#endif
#endif

995
libtommath/tommath_class.h Normal file
View File

@@ -0,0 +1,995 @@
#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))
#if defined(LTM2)
#define LTM3
#endif
#if defined(LTM1)
#define LTM2
#endif
#define LTM1
#if defined(LTM_ALL)
#define BN_ERROR_C
#define BN_FAST_MP_INVMOD_C
#define BN_FAST_MP_MONTGOMERY_REDUCE_C
#define BN_FAST_S_MP_MUL_DIGS_C
#define BN_FAST_S_MP_MUL_HIGH_DIGS_C
#define BN_FAST_S_MP_SQR_C
#define BN_MP_2EXPT_C
#define BN_MP_ABS_C
#define BN_MP_ADD_C
#define BN_MP_ADD_D_C
#define BN_MP_ADDMOD_C
#define BN_MP_AND_C
#define BN_MP_CLAMP_C
#define BN_MP_CLEAR_C
#define BN_MP_CLEAR_MULTI_C
#define BN_MP_CMP_C
#define BN_MP_CMP_D_C
#define BN_MP_CMP_MAG_C
#define BN_MP_CNT_LSB_C
#define BN_MP_COPY_C
#define BN_MP_COUNT_BITS_C
#define BN_MP_DIV_C
#define BN_MP_DIV_2_C
#define BN_MP_DIV_2D_C
#define BN_MP_DIV_3_C
#define BN_MP_DIV_D_C
#define BN_MP_DR_IS_MODULUS_C
#define BN_MP_DR_REDUCE_C
#define BN_MP_DR_SETUP_C
#define BN_MP_EXCH_C
#define BN_MP_EXPT_D_C
#define BN_MP_EXPTMOD_C
#define BN_MP_EXPTMOD_FAST_C
#define BN_MP_EXTEUCLID_C
#define BN_MP_FREAD_C
#define BN_MP_FWRITE_C
#define BN_MP_GCD_C
#define BN_MP_GET_INT_C
#define BN_MP_GROW_C
#define BN_MP_INIT_C
#define BN_MP_INIT_COPY_C
#define BN_MP_INIT_MULTI_C
#define BN_MP_INIT_SET_C
#define BN_MP_INIT_SET_INT_C
#define BN_MP_INIT_SIZE_C
#define BN_MP_INVMOD_C
#define BN_MP_INVMOD_SLOW_C
#define BN_MP_IS_SQUARE_C
#define BN_MP_JACOBI_C
#define BN_MP_KARATSUBA_MUL_C
#define BN_MP_KARATSUBA_SQR_C
#define BN_MP_LCM_C
#define BN_MP_LSHD_C
#define BN_MP_MOD_C
#define BN_MP_MOD_2D_C
#define BN_MP_MOD_D_C
#define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
#define BN_MP_MONTGOMERY_REDUCE_C
#define BN_MP_MONTGOMERY_SETUP_C
#define BN_MP_MUL_C
#define BN_MP_MUL_2_C
#define BN_MP_MUL_2D_C
#define BN_MP_MUL_D_C
#define BN_MP_MULMOD_C
#define BN_MP_N_ROOT_C
#define BN_MP_NEG_C
#define BN_MP_OR_C
#define BN_MP_PRIME_FERMAT_C
#define BN_MP_PRIME_IS_DIVISIBLE_C
#define BN_MP_PRIME_IS_PRIME_C
#define BN_MP_PRIME_MILLER_RABIN_C
#define BN_MP_PRIME_NEXT_PRIME_C
#define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
#define BN_MP_PRIME_RANDOM_EX_C
#define BN_MP_RADIX_SIZE_C
#define BN_MP_RADIX_SMAP_C
#define BN_MP_RAND_C
#define BN_MP_READ_RADIX_C
#define BN_MP_READ_SIGNED_BIN_C
#define BN_MP_READ_UNSIGNED_BIN_C
#define BN_MP_REDUCE_C
#define BN_MP_REDUCE_2K_C
#define BN_MP_REDUCE_2K_L_C
#define BN_MP_REDUCE_2K_SETUP_C
#define BN_MP_REDUCE_2K_SETUP_L_C
#define BN_MP_REDUCE_IS_2K_C
#define BN_MP_REDUCE_IS_2K_L_C
#define BN_MP_REDUCE_SETUP_C
#define BN_MP_RSHD_C
#define BN_MP_SET_C
#define BN_MP_SET_INT_C
#define BN_MP_SHRINK_C
#define BN_MP_SIGNED_BIN_SIZE_C
#define BN_MP_SQR_C
#define BN_MP_SQRMOD_C
#define BN_MP_SQRT_C
#define BN_MP_SUB_C
#define BN_MP_SUB_D_C
#define BN_MP_SUBMOD_C
#define BN_MP_TO_SIGNED_BIN_C
#define BN_MP_TO_SIGNED_BIN_N_C
#define BN_MP_TO_UNSIGNED_BIN_C
#define BN_MP_TO_UNSIGNED_BIN_N_C
#define BN_MP_TOOM_MUL_C
#define BN_MP_TOOM_SQR_C
#define BN_MP_TORADIX_C
#define BN_MP_TORADIX_N_C
#define BN_MP_UNSIGNED_BIN_SIZE_C
#define BN_MP_XOR_C
#define BN_MP_ZERO_C
#define BN_PRIME_TAB_C
#define BN_REVERSE_C
#define BN_S_MP_ADD_C
#define BN_S_MP_EXPTMOD_C
#define BN_S_MP_MUL_DIGS_C
#define BN_S_MP_MUL_HIGH_DIGS_C
#define BN_S_MP_SQR_C
#define BN_S_MP_SUB_C
#define BNCORE_C
#endif
#if defined(BN_ERROR_C)
#define BN_MP_ERROR_TO_STRING_C
#endif
#if defined(BN_FAST_MP_INVMOD_C)
#define BN_MP_ISEVEN_C
#define BN_MP_INIT_MULTI_C
#define BN_MP_COPY_C
#define BN_MP_MOD_C
#define BN_MP_SET_C
#define BN_MP_DIV_2_C
#define BN_MP_ISODD_C
#define BN_MP_SUB_C
#define BN_MP_CMP_C
#define BN_MP_ISZERO_C
#define BN_MP_CMP_D_C
#define BN_MP_ADD_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_MULTI_C
#endif
#if defined(BN_FAST_MP_MONTGOMERY_REDUCE_C)
#define BN_MP_GROW_C
#define BN_MP_RSHD_C
#define BN_MP_CLAMP_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#endif
#if defined(BN_FAST_S_MP_MUL_DIGS_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_FAST_S_MP_SQR_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_2EXPT_C)
#define BN_MP_ZERO_C
#define BN_MP_GROW_C
#endif
#if defined(BN_MP_ABS_C)
#define BN_MP_COPY_C
#endif
#if defined(BN_MP_ADD_C)
#define BN_S_MP_ADD_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#endif
#if defined(BN_MP_ADD_D_C)
#define BN_MP_GROW_C
#define BN_MP_SUB_D_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_ADDMOD_C)
#define BN_MP_INIT_C
#define BN_MP_ADD_C
#define BN_MP_CLEAR_C
#define BN_MP_MOD_C
#endif
#if defined(BN_MP_AND_C)
#define BN_MP_INIT_COPY_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_CLAMP_C)
#endif
#if defined(BN_MP_CLEAR_C)
#endif
#if defined(BN_MP_CLEAR_MULTI_C)
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_CMP_C)
#define BN_MP_CMP_MAG_C
#endif
#if defined(BN_MP_CMP_D_C)
#endif
#if defined(BN_MP_CMP_MAG_C)
#endif
#if defined(BN_MP_CNT_LSB_C)
#define BN_MP_ISZERO_C
#endif
#if defined(BN_MP_COPY_C)
#define BN_MP_GROW_C
#endif
#if defined(BN_MP_COUNT_BITS_C)
#endif
#if defined(BN_MP_DIV_C)
#define BN_MP_ISZERO_C
#define BN_MP_CMP_MAG_C
#define BN_MP_COPY_C
#define BN_MP_ZERO_C
#define BN_MP_INIT_MULTI_C
#define BN_MP_SET_C
#define BN_MP_COUNT_BITS_C
#define BN_MP_ABS_C
#define BN_MP_MUL_2D_C
#define BN_MP_CMP_C
#define BN_MP_SUB_C
#define BN_MP_ADD_C
#define BN_MP_DIV_2D_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_MULTI_C
#define BN_MP_INIT_SIZE_C
#define BN_MP_INIT_C
#define BN_MP_INIT_COPY_C
#define BN_MP_LSHD_C
#define BN_MP_RSHD_C
#define BN_MP_MUL_D_C
#define BN_MP_CLAMP_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_DIV_2_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_DIV_2D_C)
#define BN_MP_COPY_C
#define BN_MP_ZERO_C
#define BN_MP_INIT_C
#define BN_MP_MOD_2D_C
#define BN_MP_CLEAR_C
#define BN_MP_RSHD_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#endif
#if defined(BN_MP_DIV_3_C)
#define BN_MP_INIT_SIZE_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_DIV_D_C)
#define BN_MP_ISZERO_C
#define BN_MP_COPY_C
#define BN_MP_DIV_2D_C
#define BN_MP_DIV_3_C
#define BN_MP_INIT_SIZE_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_DR_IS_MODULUS_C)
#endif
#if defined(BN_MP_DR_REDUCE_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#endif
#if defined(BN_MP_DR_SETUP_C)
#endif
#if defined(BN_MP_EXCH_C)
#endif
#if defined(BN_MP_EXPT_D_C)
#define BN_MP_INIT_COPY_C
#define BN_MP_SET_C
#define BN_MP_SQR_C
#define BN_MP_CLEAR_C
#define BN_MP_MUL_C
#endif
#if defined(BN_MP_EXPTMOD_C)
#define BN_MP_INIT_C
#define BN_MP_INVMOD_C
#define BN_MP_CLEAR_C
#define BN_MP_ABS_C
#define BN_MP_CLEAR_MULTI_C
#define BN_MP_REDUCE_IS_2K_L_C
#define BN_S_MP_EXPTMOD_C
#define BN_MP_DR_IS_MODULUS_C
#define BN_MP_REDUCE_IS_2K_C
#define BN_MP_ISODD_C
#define BN_MP_EXPTMOD_FAST_C
#endif
#if defined(BN_MP_EXPTMOD_FAST_C)
#define BN_MP_COUNT_BITS_C
#define BN_MP_INIT_C
#define BN_MP_CLEAR_C
#define BN_MP_MONTGOMERY_SETUP_C
#define BN_FAST_MP_MONTGOMERY_REDUCE_C
#define BN_MP_MONTGOMERY_REDUCE_C
#define BN_MP_DR_SETUP_C
#define BN_MP_DR_REDUCE_C
#define BN_MP_REDUCE_2K_SETUP_C
#define BN_MP_REDUCE_2K_C
#define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
#define BN_MP_MULMOD_C
#define BN_MP_SET_C
#define BN_MP_MOD_C
#define BN_MP_COPY_C
#define BN_MP_SQR_C
#define BN_MP_MUL_C
#define BN_MP_EXCH_C
#endif
#if defined(BN_MP_EXTEUCLID_C)
#define BN_MP_INIT_MULTI_C
#define BN_MP_SET_C
#define BN_MP_COPY_C
#define BN_MP_ISZERO_C
#define BN_MP_DIV_C
#define BN_MP_MUL_C
#define BN_MP_SUB_C
#define BN_MP_NEG_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_MULTI_C
#endif
#if defined(BN_MP_FREAD_C)
#define BN_MP_ZERO_C
#define BN_MP_S_RMAP_C
#define BN_MP_MUL_D_C
#define BN_MP_ADD_D_C
#define BN_MP_CMP_D_C
#endif
#if defined(BN_MP_FWRITE_C)
#define BN_MP_RADIX_SIZE_C
#define BN_MP_TORADIX_C
#endif
#if defined(BN_MP_GCD_C)
#define BN_MP_ISZERO_C
#define BN_MP_ABS_C
#define BN_MP_ZERO_C
#define BN_MP_INIT_COPY_C
#define BN_MP_CNT_LSB_C
#define BN_MP_DIV_2D_C
#define BN_MP_CMP_MAG_C
#define BN_MP_EXCH_C
#define BN_S_MP_SUB_C
#define BN_MP_MUL_2D_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_GET_INT_C)
#endif
#if defined(BN_MP_GROW_C)
#endif
#if defined(BN_MP_INIT_C)
#endif
#if defined(BN_MP_INIT_COPY_C)
#define BN_MP_COPY_C
#endif
#if defined(BN_MP_INIT_MULTI_C)
#define BN_MP_ERR_C
#define BN_MP_INIT_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_INIT_SET_C)
#define BN_MP_INIT_C
#define BN_MP_SET_C
#endif
#if defined(BN_MP_INIT_SET_INT_C)
#define BN_MP_INIT_C
#define BN_MP_SET_INT_C
#endif
#if defined(BN_MP_INIT_SIZE_C)
#define BN_MP_INIT_C
#endif
#if defined(BN_MP_INVMOD_C)
#define BN_MP_ISZERO_C
#define BN_MP_ISODD_C
#define BN_FAST_MP_INVMOD_C
#define BN_MP_INVMOD_SLOW_C
#endif
#if defined(BN_MP_INVMOD_SLOW_C)
#define BN_MP_ISZERO_C
#define BN_MP_INIT_MULTI_C
#define BN_MP_MOD_C
#define BN_MP_COPY_C
#define BN_MP_ISEVEN_C
#define BN_MP_SET_C
#define BN_MP_DIV_2_C
#define BN_MP_ISODD_C
#define BN_MP_ADD_C
#define BN_MP_SUB_C
#define BN_MP_CMP_C
#define BN_MP_CMP_D_C
#define BN_MP_CMP_MAG_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_MULTI_C
#endif
#if defined(BN_MP_IS_SQUARE_C)
#define BN_MP_MOD_D_C
#define BN_MP_INIT_SET_INT_C
#define BN_MP_MOD_C
#define BN_MP_GET_INT_C
#define BN_MP_SQRT_C
#define BN_MP_SQR_C
#define BN_MP_CMP_MAG_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_JACOBI_C)
#define BN_MP_CMP_D_C
#define BN_MP_ISZERO_C
#define BN_MP_INIT_COPY_C
#define BN_MP_CNT_LSB_C
#define BN_MP_DIV_2D_C
#define BN_MP_MOD_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_KARATSUBA_MUL_C)
#define BN_MP_MUL_C
#define BN_MP_INIT_SIZE_C
#define BN_MP_CLAMP_C
#define BN_MP_SUB_C
#define BN_MP_ADD_C
#define BN_MP_LSHD_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_KARATSUBA_SQR_C)
#define BN_MP_INIT_SIZE_C
#define BN_MP_CLAMP_C
#define BN_MP_SQR_C
#define BN_MP_SUB_C
#define BN_S_MP_ADD_C
#define BN_MP_LSHD_C
#define BN_MP_ADD_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_LCM_C)
#define BN_MP_INIT_MULTI_C
#define BN_MP_GCD_C
#define BN_MP_CMP_MAG_C
#define BN_MP_DIV_C
#define BN_MP_MUL_C
#define BN_MP_CLEAR_MULTI_C
#endif
#if defined(BN_MP_LSHD_C)
#define BN_MP_GROW_C
#define BN_MP_RSHD_C
#endif
#if defined(BN_MP_MOD_C)
#define BN_MP_INIT_C
#define BN_MP_DIV_C
#define BN_MP_CLEAR_C
#define BN_MP_ADD_C
#define BN_MP_EXCH_C
#endif
#if defined(BN_MP_MOD_2D_C)
#define BN_MP_ZERO_C
#define BN_MP_COPY_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_MOD_D_C)
#define BN_MP_DIV_D_C
#endif
#if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C)
#define BN_MP_COUNT_BITS_C
#define BN_MP_2EXPT_C
#define BN_MP_SET_C
#define BN_MP_MUL_2_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#endif
#if defined(BN_MP_MONTGOMERY_REDUCE_C)
#define BN_FAST_MP_MONTGOMERY_REDUCE_C
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#define BN_MP_RSHD_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#endif
#if defined(BN_MP_MONTGOMERY_SETUP_C)
#endif
#if defined(BN_MP_MUL_C)
#define BN_MP_TOOM_MUL_C
#define BN_MP_KARATSUBA_MUL_C
#define BN_FAST_S_MP_MUL_DIGS_C
#define BN_S_MP_MUL_C
#define BN_S_MP_MUL_DIGS_C
#endif
#if defined(BN_MP_MUL_2_C)
#define BN_MP_GROW_C
#endif
#if defined(BN_MP_MUL_2D_C)
#define BN_MP_COPY_C
#define BN_MP_GROW_C
#define BN_MP_LSHD_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_MUL_D_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_MULMOD_C)
#define BN_MP_INIT_C
#define BN_MP_MUL_C
#define BN_MP_CLEAR_C
#define BN_MP_MOD_C
#endif
#if defined(BN_MP_N_ROOT_C)
#define BN_MP_INIT_C
#define BN_MP_SET_C
#define BN_MP_COPY_C
#define BN_MP_EXPT_D_C
#define BN_MP_MUL_C
#define BN_MP_SUB_C
#define BN_MP_MUL_D_C
#define BN_MP_DIV_C
#define BN_MP_CMP_C
#define BN_MP_SUB_D_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_NEG_C)
#define BN_MP_COPY_C
#define BN_MP_ISZERO_C
#endif
#if defined(BN_MP_OR_C)
#define BN_MP_INIT_COPY_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_PRIME_FERMAT_C)
#define BN_MP_CMP_D_C
#define BN_MP_INIT_C
#define BN_MP_EXPTMOD_C
#define BN_MP_CMP_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_PRIME_IS_DIVISIBLE_C)
#define BN_MP_MOD_D_C
#endif
#if defined(BN_MP_PRIME_IS_PRIME_C)
#define BN_MP_CMP_D_C
#define BN_MP_PRIME_IS_DIVISIBLE_C
#define BN_MP_INIT_C
#define BN_MP_SET_C
#define BN_MP_PRIME_MILLER_RABIN_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_PRIME_MILLER_RABIN_C)
#define BN_MP_CMP_D_C
#define BN_MP_INIT_COPY_C
#define BN_MP_SUB_D_C
#define BN_MP_CNT_LSB_C
#define BN_MP_DIV_2D_C
#define BN_MP_EXPTMOD_C
#define BN_MP_CMP_C
#define BN_MP_SQRMOD_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_PRIME_NEXT_PRIME_C)
#define BN_MP_CMP_D_C
#define BN_MP_SET_C
#define BN_MP_SUB_D_C
#define BN_MP_ISEVEN_C
#define BN_MP_MOD_D_C
#define BN_MP_INIT_C
#define BN_MP_ADD_D_C
#define BN_MP_PRIME_MILLER_RABIN_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C)
#endif
#if defined(BN_MP_PRIME_RANDOM_EX_C)
#define BN_MP_READ_UNSIGNED_BIN_C
#define BN_MP_PRIME_IS_PRIME_C
#define BN_MP_SUB_D_C
#define BN_MP_DIV_2_C
#define BN_MP_MUL_2_C
#define BN_MP_ADD_D_C
#endif
#if defined(BN_MP_RADIX_SIZE_C)
#define BN_MP_COUNT_BITS_C
#define BN_MP_INIT_COPY_C
#define BN_MP_ISZERO_C
#define BN_MP_DIV_D_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_RADIX_SMAP_C)
#define BN_MP_S_RMAP_C
#endif
#if defined(BN_MP_RAND_C)
#define BN_MP_ZERO_C
#define BN_MP_ADD_D_C
#define BN_MP_LSHD_C
#endif
#if defined(BN_MP_READ_RADIX_C)
#define BN_MP_ZERO_C
#define BN_MP_S_RMAP_C
#define BN_MP_RADIX_SMAP_C
#define BN_MP_MUL_D_C
#define BN_MP_ADD_D_C
#define BN_MP_ISZERO_C
#endif
#if defined(BN_MP_READ_SIGNED_BIN_C)
#define BN_MP_READ_UNSIGNED_BIN_C
#endif
#if defined(BN_MP_READ_UNSIGNED_BIN_C)
#define BN_MP_GROW_C
#define BN_MP_ZERO_C
#define BN_MP_MUL_2D_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_REDUCE_C)
#define BN_MP_REDUCE_SETUP_C
#define BN_MP_INIT_COPY_C
#define BN_MP_RSHD_C
#define BN_MP_MUL_C
#define BN_S_MP_MUL_HIGH_DIGS_C
#define BN_FAST_S_MP_MUL_HIGH_DIGS_C
#define BN_MP_MOD_2D_C
#define BN_S_MP_MUL_DIGS_C
#define BN_MP_SUB_C
#define BN_MP_CMP_D_C
#define BN_MP_SET_C
#define BN_MP_LSHD_C
#define BN_MP_ADD_C
#define BN_MP_CMP_C
#define BN_S_MP_SUB_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_REDUCE_2K_C)
#define BN_MP_INIT_C
#define BN_MP_COUNT_BITS_C
#define BN_MP_DIV_2D_C
#define BN_MP_MUL_D_C
#define BN_S_MP_ADD_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_REDUCE_2K_L_C)
#define BN_MP_INIT_C
#define BN_MP_COUNT_BITS_C
#define BN_MP_DIV_2D_C
#define BN_MP_MUL_C
#define BN_S_MP_ADD_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_REDUCE_2K_SETUP_C)
#define BN_MP_INIT_C
#define BN_MP_COUNT_BITS_C
#define BN_MP_2EXPT_C
#define BN_MP_CLEAR_C
#define BN_S_MP_SUB_C
#endif
#if defined(BN_MP_REDUCE_2K_SETUP_L_C)
#define BN_MP_INIT_C
#define BN_MP_2EXPT_C
#define BN_MP_COUNT_BITS_C
#define BN_S_MP_SUB_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_REDUCE_IS_2K_C)
#define BN_MP_REDUCE_2K_C
#define BN_MP_COUNT_BITS_C
#endif
#if defined(BN_MP_REDUCE_IS_2K_L_C)
#endif
#if defined(BN_MP_REDUCE_SETUP_C)
#define BN_MP_2EXPT_C
#define BN_MP_DIV_C
#endif
#if defined(BN_MP_RSHD_C)
#define BN_MP_ZERO_C
#endif
#if defined(BN_MP_SET_C)
#define BN_MP_ZERO_C
#endif
#if defined(BN_MP_SET_INT_C)
#define BN_MP_ZERO_C
#define BN_MP_MUL_2D_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_SHRINK_C)
#endif
#if defined(BN_MP_SIGNED_BIN_SIZE_C)
#define BN_MP_UNSIGNED_BIN_SIZE_C
#endif
#if defined(BN_MP_SQR_C)
#define BN_MP_TOOM_SQR_C
#define BN_MP_KARATSUBA_SQR_C
#define BN_FAST_S_MP_SQR_C
#define BN_S_MP_SQR_C
#endif
#if defined(BN_MP_SQRMOD_C)
#define BN_MP_INIT_C
#define BN_MP_SQR_C
#define BN_MP_CLEAR_C
#define BN_MP_MOD_C
#endif
#if defined(BN_MP_SQRT_C)
#define BN_MP_N_ROOT_C
#define BN_MP_ISZERO_C
#define BN_MP_ZERO_C
#define BN_MP_INIT_COPY_C
#define BN_MP_RSHD_C
#define BN_MP_DIV_C
#define BN_MP_ADD_C
#define BN_MP_DIV_2_C
#define BN_MP_CMP_MAG_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_SUB_C)
#define BN_S_MP_ADD_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#endif
#if defined(BN_MP_SUB_D_C)
#define BN_MP_GROW_C
#define BN_MP_ADD_D_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_MP_SUBMOD_C)
#define BN_MP_INIT_C
#define BN_MP_SUB_C
#define BN_MP_CLEAR_C
#define BN_MP_MOD_C
#endif
#if defined(BN_MP_TO_SIGNED_BIN_C)
#define BN_MP_TO_UNSIGNED_BIN_C
#endif
#if defined(BN_MP_TO_SIGNED_BIN_N_C)
#define BN_MP_SIGNED_BIN_SIZE_C
#define BN_MP_TO_SIGNED_BIN_C
#endif
#if defined(BN_MP_TO_UNSIGNED_BIN_C)
#define BN_MP_INIT_COPY_C
#define BN_MP_ISZERO_C
#define BN_MP_DIV_2D_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_TO_UNSIGNED_BIN_N_C)
#define BN_MP_UNSIGNED_BIN_SIZE_C
#define BN_MP_TO_UNSIGNED_BIN_C
#endif
#if defined(BN_MP_TOOM_MUL_C)
#define BN_MP_INIT_MULTI_C
#define BN_MP_MOD_2D_C
#define BN_MP_COPY_C
#define BN_MP_RSHD_C
#define BN_MP_MUL_C
#define BN_MP_MUL_2_C
#define BN_MP_ADD_C
#define BN_MP_SUB_C
#define BN_MP_DIV_2_C
#define BN_MP_MUL_2D_C
#define BN_MP_MUL_D_C
#define BN_MP_DIV_3_C
#define BN_MP_LSHD_C
#define BN_MP_CLEAR_MULTI_C
#endif
#if defined(BN_MP_TOOM_SQR_C)
#define BN_MP_INIT_MULTI_C
#define BN_MP_MOD_2D_C
#define BN_MP_COPY_C
#define BN_MP_RSHD_C
#define BN_MP_SQR_C
#define BN_MP_MUL_2_C
#define BN_MP_ADD_C
#define BN_MP_SUB_C
#define BN_MP_DIV_2_C
#define BN_MP_MUL_2D_C
#define BN_MP_MUL_D_C
#define BN_MP_DIV_3_C
#define BN_MP_LSHD_C
#define BN_MP_CLEAR_MULTI_C
#endif
#if defined(BN_MP_TORADIX_C)
#define BN_MP_ISZERO_C
#define BN_MP_INIT_COPY_C
#define BN_MP_DIV_D_C
#define BN_MP_CLEAR_C
#define BN_MP_S_RMAP_C
#endif
#if defined(BN_MP_TORADIX_N_C)
#define BN_MP_ISZERO_C
#define BN_MP_INIT_COPY_C
#define BN_MP_DIV_D_C
#define BN_MP_CLEAR_C
#define BN_MP_S_RMAP_C
#endif
#if defined(BN_MP_UNSIGNED_BIN_SIZE_C)
#define BN_MP_COUNT_BITS_C
#endif
#if defined(BN_MP_XOR_C)
#define BN_MP_INIT_COPY_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_ZERO_C)
#endif
#if defined(BN_PRIME_TAB_C)
#endif
#if defined(BN_REVERSE_C)
#endif
#if defined(BN_S_MP_ADD_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#endif
#if defined(BN_S_MP_EXPTMOD_C)
#define BN_MP_COUNT_BITS_C
#define BN_MP_INIT_C
#define BN_MP_CLEAR_C
#define BN_MP_REDUCE_SETUP_C
#define BN_MP_REDUCE_C
#define BN_MP_REDUCE_2K_SETUP_L_C
#define BN_MP_REDUCE_2K_L_C
#define BN_MP_MOD_C
#define BN_MP_COPY_C
#define BN_MP_SQR_C
#define BN_MP_MUL_C
#define BN_MP_SET_C
#define BN_MP_EXCH_C
#endif
#if defined(BN_S_MP_MUL_DIGS_C)
#define BN_FAST_S_MP_MUL_DIGS_C
#define BN_MP_INIT_SIZE_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_S_MP_MUL_HIGH_DIGS_C)
#define BN_FAST_S_MP_MUL_HIGH_DIGS_C
#define BN_MP_INIT_SIZE_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_S_MP_SQR_C)
#define BN_MP_INIT_SIZE_C
#define BN_MP_CLAMP_C
#define BN_MP_EXCH_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_S_MP_SUB_C)
#define BN_MP_GROW_C
#define BN_MP_CLAMP_C
#endif
#if defined(BNCORE_C)
#endif
#ifdef LTM3
#define LTM_LAST
#endif
#include <tommath_superclass.h>
#include <tommath_class.h>
#else
#define LTM_LAST
#endif

View File

@@ -0,0 +1,72 @@
/* super class file for PK algos */
/* default ... include all MPI */
#define LTM_ALL
/* RSA only (does not support DH/DSA/ECC) */
/* #define SC_RSA_1 */
/* For reference.... On an Athlon64 optimizing for speed...
LTM's mpi.o with all functions [striped] is 142KiB in size.
*/
/* Works for RSA only, mpi.o is 68KiB */
#ifdef SC_RSA_1
#define BN_MP_SHRINK_C
#define BN_MP_LCM_C
#define BN_MP_PRIME_RANDOM_EX_C
#define BN_MP_INVMOD_C
#define BN_MP_GCD_C
#define BN_MP_MOD_C
#define BN_MP_MULMOD_C
#define BN_MP_ADDMOD_C
#define BN_MP_EXPTMOD_C
#define BN_MP_SET_INT_C
#define BN_MP_INIT_MULTI_C
#define BN_MP_CLEAR_MULTI_C
#define BN_MP_UNSIGNED_BIN_SIZE_C
#define BN_MP_TO_UNSIGNED_BIN_C
#define BN_MP_MOD_D_C
#define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
#define BN_REVERSE_C
#define BN_PRIME_TAB_C
/* other modifiers */
#define BN_MP_DIV_SMALL /* Slower division, not critical */
/* here we are on the last pass so we turn things off. The functions classes are still there
* but we remove them specifically from the build. This also invokes tweaks in functions
* like removing support for even moduli, etc...
*/
#ifdef LTM_LAST
#undef BN_MP_TOOM_MUL_C
#undef BN_MP_TOOM_SQR_C
#undef BN_MP_KARATSUBA_MUL_C
#undef BN_MP_KARATSUBA_SQR_C
#undef BN_MP_REDUCE_C
#undef BN_MP_REDUCE_SETUP_C
#undef BN_MP_DR_IS_MODULUS_C
#undef BN_MP_DR_SETUP_C
#undef BN_MP_DR_REDUCE_C
#undef BN_MP_REDUCE_IS_2K_C
#undef BN_MP_REDUCE_2K_SETUP_C
#undef BN_MP_REDUCE_2K_C
#undef BN_S_MP_EXPTMOD_C
#undef BN_MP_DIV_3_C
#undef BN_S_MP_MUL_HIGH_DIGS_C
#undef BN_FAST_S_MP_MUL_HIGH_DIGS_C
#undef BN_FAST_MP_INVMOD_C
/* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold
* which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines]
* which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without
* trouble.
*/
#undef BN_S_MP_MUL_DIGS_C
#undef BN_S_MP_SQR_C
#undef BN_MP_MONTGOMERY_REDUCE_C
#endif
#endif