Merge pull request #158 from rth7680/s390

S390
This commit is contained in:
Anthony Green
2014-12-20 10:20:40 -05:00
5 changed files with 561 additions and 677 deletions

View File

@@ -183,6 +183,23 @@ if test x$TARGET = xX86 || test x$TARGET = xX86_WIN32 || test x$TARGET = xX86_64
fi
fi
if test x$TARGET = xS390; then
AC_CACHE_CHECK([compiler uses zarch features],
libffi_cv_as_s390_zarch, [
libffi_cv_as_s390_zarch=no
echo 'void foo(void) { bar(); bar(); }' > conftest.c
if $CC $CFLAGS -S conftest.c > /dev/null 2>&1; then
if grep -q brasl conftest.s; then
libffi_cv_as_s390_zarch=yes
fi
fi
])
if test "x$libffi_cv_as_s390_zarch" = xyes; then
AC_DEFINE(HAVE_AS_S390_ZARCH, 1,
[Define if the compiler uses zarch features.])
fi
fi
# On PaX enable kernels that have MPROTECT enable we can't use PROT_EXEC.
AC_ARG_ENABLE(pax_emutramp,
[ --enable-pax_emutramp enable pax emulated trampolines, for we can't use PROT_EXEC],

View File

@@ -30,9 +30,8 @@
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include "internal.h"
/*====================== End of Includes =============================*/
@@ -54,44 +53,27 @@
/* Round to multiple of 16. */
#define ROUND_SIZE(size) (((size) + 15) & ~15)
/* If these values change, sysv.S must be adapted! */
#define FFI390_RET_VOID 0
#define FFI390_RET_STRUCT 1
#define FFI390_RET_FLOAT 2
#define FFI390_RET_DOUBLE 3
#define FFI390_RET_INT32 4
#define FFI390_RET_INT64 5
/*===================== End of Defines ===============================*/
/*====================================================================*/
/* Prototypes */
/* ---------- */
/*====================================================================*/
static void ffi_prep_args (unsigned char *, extended_cif *);
void
#if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2)
__attribute__ ((visibility ("hidden")))
#endif
ffi_closure_helper_SYSV (ffi_closure *, unsigned long *,
unsigned long long *, unsigned long *);
/*====================== End of Prototypes ===========================*/
/*====================================================================*/
/* Externals */
/* --------- */
/*====================================================================*/
extern void ffi_call_SYSV(unsigned,
extended_cif *,
void (*)(unsigned char *, extended_cif *),
unsigned,
void *,
void (*fn)(void));
struct call_frame
{
void *back_chain;
void *eos;
unsigned long gpr_args[5];
unsigned long gpr_save[9];
unsigned long long fpr_args[4];
};
extern void FFI_HIDDEN ffi_call_SYSV(struct call_frame *, unsigned, void *,
void (*fn)(void), void *);
extern void ffi_closure_SYSV(void);
extern void ffi_go_closure_SYSV(void);
/*====================== End of Externals ============================*/
@@ -147,190 +129,6 @@ ffi_check_struct_type (ffi_type *arg)
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_args. */
/* */
/* Function - Prepare parameters for call to function. */
/* */
/* ffi_prep_args is called by the assembly routine once stack space */
/* has been allocated for the function's arguments. */
/* */
/*====================================================================*/
static void
ffi_prep_args (unsigned char *stack, extended_cif *ecif)
{
/* The stack space will be filled with those areas:
FPR argument register save area (highest addresses)
GPR argument register save area
temporary struct copies
overflow argument area (lowest addresses)
We set up the following pointers:
p_fpr: bottom of the FPR area (growing upwards)
p_gpr: bottom of the GPR area (growing upwards)
p_ov: bottom of the overflow area (growing upwards)
p_struct: top of the struct copy area (growing downwards)
All areas are kept aligned to twice the word size. */
int gpr_off = ecif->cif->bytes;
int fpr_off = gpr_off + ROUND_SIZE (MAX_GPRARGS * sizeof (long));
unsigned long long *p_fpr = (unsigned long long *)(stack + fpr_off);
unsigned long *p_gpr = (unsigned long *)(stack + gpr_off);
unsigned char *p_struct = (unsigned char *)p_gpr;
unsigned long *p_ov = (unsigned long *)stack;
int n_fpr = 0;
int n_gpr = 0;
int n_ov = 0;
ffi_type **ptr;
void **p_argv = ecif->avalue;
int i;
/* If we returning a structure then we set the first parameter register
to the address of where we are returning this structure. */
if (ecif->cif->flags == FFI390_RET_STRUCT)
p_gpr[n_gpr++] = (unsigned long) ecif->rvalue;
/* Now for the arguments. */
for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
i > 0;
i--, ptr++, p_argv++)
{
void *arg = *p_argv;
int type = (*ptr)->type;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
/* 16-byte long double is passed like a struct. */
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
/* Check how a structure type is passed. */
if (type == FFI_TYPE_STRUCT || type == FFI_TYPE_COMPLEX)
{
if (type == FFI_TYPE_COMPLEX)
type = FFI_TYPE_POINTER;
else
type = ffi_check_struct_type (*ptr);
/* If we pass the struct via pointer, copy the data. */
if (type == FFI_TYPE_POINTER)
{
p_struct -= ROUND_SIZE ((*ptr)->size);
memcpy (p_struct, (char *)arg, (*ptr)->size);
arg = &p_struct;
}
}
/* Now handle all primitive int/pointer/float data types. */
switch (type)
{
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = *(unsigned long long *) arg;
else
#ifdef __s390x__
p_ov[n_ov++] = *(unsigned long *) arg;
#else
p_ov[n_ov++] = ((unsigned long *) arg)[0],
p_ov[n_ov++] = ((unsigned long *) arg)[1];
#endif
break;
case FFI_TYPE_FLOAT:
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = (long long) *(unsigned int *) arg << 32;
else
p_ov[n_ov++] = *(unsigned int *) arg;
break;
case FFI_TYPE_POINTER:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = (unsigned long)*(unsigned char **) arg;
else
p_ov[n_ov++] = (unsigned long)*(unsigned char **) arg;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned long *) arg;
else
p_ov[n_ov++] = *(unsigned long *) arg;
#else
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = ((unsigned long *) arg)[0],
p_gpr[n_gpr++] = ((unsigned long *) arg)[1];
else
p_ov[n_ov++] = ((unsigned long *) arg)[0],
p_ov[n_ov++] = ((unsigned long *) arg)[1];
#endif
break;
case FFI_TYPE_UINT32:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned int *) arg;
else
p_ov[n_ov++] = *(unsigned int *) arg;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed int *) arg;
else
p_ov[n_ov++] = *(signed int *) arg;
break;
case FFI_TYPE_UINT16:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned short *) arg;
else
p_ov[n_ov++] = *(unsigned short *) arg;
break;
case FFI_TYPE_SINT16:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed short *) arg;
else
p_ov[n_ov++] = *(signed short *) arg;
break;
case FFI_TYPE_UINT8:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned char *) arg;
else
p_ov[n_ov++] = *(unsigned char *) arg;
break;
case FFI_TYPE_SINT8:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed char *) arg;
else
p_ov[n_ov++] = *(signed char *) arg;
break;
default:
FFI_ASSERT (0);
break;
}
}
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_cif_machdep. */
@@ -339,7 +137,7 @@ ffi_prep_args (unsigned char *stack, extended_cif *ecif)
/* */
/*====================================================================*/
ffi_status
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep(ffi_cif *cif)
{
size_t struct_size = 0;
@@ -504,39 +302,192 @@ ffi_prep_cif_machdep(ffi_cif *cif)
/* */
/*====================================================================*/
void
ffi_call(ffi_cif *cif,
static void
ffi_call_int(ffi_cif *cif,
void (*fn)(void),
void *rvalue,
void **avalue)
void **avalue,
void *closure)
{
int ret_type = cif->flags;
extended_cif ecif;
size_t rsize = 0, bytes = cif->bytes;
unsigned char *stack, *p_struct;
struct call_frame *frame;
unsigned long *p_ov, *p_gpr;
unsigned long long *p_fpr;
int n_fpr, n_gpr, n_ov, i, n;
ffi_type **arg_types;
ecif.cif = cif;
ecif.avalue = avalue;
ecif.rvalue = rvalue;
FFI_ASSERT (cif->abi == FFI_SYSV);
/* If we don't have a return value, we need to fake one. */
if (rvalue == NULL)
{
if (ret_type == FFI390_RET_STRUCT)
ecif.rvalue = alloca (cif->rtype->size);
if (ret_type & FFI390_RET_IN_MEM)
rsize = cif->rtype->size;
else
ret_type = FFI390_RET_VOID;
}
switch (cif->abi)
/* The stack space will be filled with those areas:
dummy structure return (highest addresses)
FPR argument register save area
GPR argument register save area
stack frame for ffi_call_SYSV
temporary struct copies
overflow argument area (lowest addresses)
We set up the following pointers:
p_fpr: bottom of the FPR area (growing upwards)
p_gpr: bottom of the GPR area (growing upwards)
p_ov: bottom of the overflow area (growing upwards)
p_struct: top of the struct copy area (growing downwards)
All areas are kept aligned to twice the word size.
Note that we're going to create the stack frame for both
ffi_call_SYSV _and_ the target function right here. This
works because we don't make any function calls with more
than 5 arguments (indeed only memcpy and ffi_call_SYSV),
and thus we don't have any stacked outgoing parameters. */
stack = alloca (bytes + sizeof(struct call_frame) + rsize);
frame = (struct call_frame *)(stack + bytes);
if (rsize)
rvalue = frame + 1;
/* Link the new frame back to the one from this function. */
frame->back_chain = __builtin_frame_address (0);
/* Fill in all of the argument stuff. */
p_ov = (unsigned long *)stack;
p_struct = (unsigned char *)frame;
p_gpr = frame->gpr_args;
p_fpr = frame->fpr_args;
n_fpr = n_gpr = n_ov = 0;
/* If we returning a structure then we set the first parameter register
to the address of where we are returning this structure. */
if (cif->flags & FFI390_RET_IN_MEM)
p_gpr[n_gpr++] = (uintptr_t) rvalue;
/* Now for the arguments. */
arg_types = cif->arg_types;
for (i = 0, n = cif->nargs; i < n; ++i)
{
case FFI_SYSV:
ffi_call_SYSV (cif->bytes, &ecif, ffi_prep_args,
ret_type, ecif.rvalue, fn);
ffi_type *ty = arg_types[i];
void *arg = avalue[i];
int type = ty->type;
ffi_arg val;
restart:
switch (type)
{
case FFI_TYPE_SINT8:
val = *(SINT8 *)arg;
goto do_int;
case FFI_TYPE_UINT8:
val = *(UINT8 *)arg;
goto do_int;
case FFI_TYPE_SINT16:
val = *(SINT16 *)arg;
goto do_int;
case FFI_TYPE_UINT16:
val = *(UINT16 *)arg;
goto do_int;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
val = *(SINT32 *)arg;
goto do_int;
case FFI_TYPE_UINT32:
val = *(UINT32 *)arg;
goto do_int;
case FFI_TYPE_POINTER:
val = *(uintptr_t *)arg;
do_int:
*(n_gpr < MAX_GPRARGS ? p_gpr + n_gpr++ : p_ov + n_ov++) = val;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
val = *(UINT64 *)arg;
goto do_int;
#else
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = ((UINT32 *) arg)[0],
p_gpr[n_gpr++] = ((UINT32 *) arg)[1];
else
p_ov[n_ov++] = ((UINT32 *) arg)[0],
p_ov[n_ov++] = ((UINT32 *) arg)[1];
#endif
break;
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = *(UINT64 *) arg;
else
{
#ifdef __s390x__
p_ov[n_ov++] = *(UINT64 *) arg;
#else
p_ov[n_ov++] = ((UINT32 *) arg)[0],
p_ov[n_ov++] = ((UINT32 *) arg)[1];
#endif
}
break;
case FFI_TYPE_FLOAT:
val = *(UINT32 *)arg;
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = (UINT64)val << 32;
else
p_ov[n_ov++] = val;
break;
case FFI_TYPE_STRUCT:
/* Check how a structure type is passed. */
type = ffi_check_struct_type (ty);
/* Some structures are passed via a type they contain. */
if (type != FFI_TYPE_POINTER)
goto restart;
/* ... otherwise, passed by reference. fallthru. */
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
/* 16-byte long double is passed via reference. */
#endif
case FFI_TYPE_COMPLEX:
/* Complex types are passed via reference. */
p_struct -= ROUND_SIZE (ty->size);
memcpy (p_struct, arg, ty->size);
val = (uintptr_t)p_struct;
goto do_int;
default:
FFI_ASSERT (0);
break;
}
}
ffi_call_SYSV (frame, ret_type & FFI360_RET_MASK, rvalue, fn, closure);
}
void
ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
ffi_call_int(cif, fn, rvalue, avalue, NULL);
}
void
ffi_call_go (ffi_cif *cif, void (*fn)(void), void *rvalue,
void **avalue, void *closure)
{
ffi_call_int(cif, fn, rvalue, avalue, closure);
}
/*======================== End of Routine ============================*/
@@ -549,8 +500,10 @@ ffi_call(ffi_cif *cif,
/* */
/*====================================================================*/
void
ffi_closure_helper_SYSV (ffi_closure *closure,
void FFI_HIDDEN
ffi_closure_helper_SYSV (ffi_cif *cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
unsigned long *p_gpr,
unsigned long long *p_fpr,
unsigned long *p_ov)
@@ -569,21 +522,16 @@ ffi_closure_helper_SYSV (ffi_closure *closure,
int i;
/* Allocate buffer for argument list pointers. */
p_arg = avalue = alloca (closure->cif->nargs * sizeof (void *));
p_arg = avalue = alloca (cif->nargs * sizeof (void *));
/* If we returning a structure, pass the structure address
directly to the target function. Otherwise, have the target
function store the return value to the GPR save area. */
if (closure->cif->flags == FFI390_RET_STRUCT)
if (cif->flags & FFI390_RET_IN_MEM)
rvalue = (void *) p_gpr[n_gpr++];
/* Now for the arguments. */
for (ptr = closure->cif->arg_types, i = closure->cif->nargs;
i > 0;
i--, p_arg++, ptr++)
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, p_arg++, ptr++)
{
int deref_struct_pointer = 0;
int type = (*ptr)->type;
@@ -610,11 +558,13 @@ ffi_closure_helper_SYSV (ffi_closure *closure,
/* Pointers are passed like UINTs of the same size. */
if (type == FFI_TYPE_POINTER)
{
#ifdef __s390x__
type = FFI_TYPE_UINT64;
#else
type = FFI_TYPE_UINT32;
#endif
}
/* Now handle all primitive int/float data types. */
switch (type)
@@ -689,10 +639,10 @@ ffi_closure_helper_SYSV (ffi_closure *closure,
/* Call the target function. */
(closure->fun) (closure->cif, rvalue, avalue, closure->user_data);
(fun) (cif, rvalue, avalue, user_data);
/* Convert the return value. */
switch (closure->cif->rtype->type)
switch (cif->rtype->type)
{
/* Void is easy, and so is struct. */
case FFI_TYPE_VOID:
@@ -761,32 +711,46 @@ ffi_prep_closure_loc (ffi_closure *closure,
void *user_data,
void *codeloc)
{
static unsigned short const template[] = {
0x0d10, /* basr %r1,0 */
#ifndef __s390x__
0x9801, 0x1006, /* lm %r0,%r1,6(%r1) */
#else
0xeb01, 0x100e, 0x0004, /* lmg %r0,%r1,14(%r1) */
#endif
0x07f1 /* br %r1 */
};
unsigned long *tramp = (unsigned long *)&closure->tramp;
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
#ifndef __s390x__
*(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */
*(short *)&closure->tramp [2] = 0x9801; /* lm %r0,%r1,6(%r1) */
*(short *)&closure->tramp [4] = 0x1006;
*(short *)&closure->tramp [6] = 0x07f1; /* br %r1 */
*(long *)&closure->tramp [8] = (long)codeloc;
*(long *)&closure->tramp[12] = (long)&ffi_closure_SYSV;
#else
*(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */
*(short *)&closure->tramp [2] = 0xeb01; /* lmg %r0,%r1,14(%r1) */
*(short *)&closure->tramp [4] = 0x100e;
*(short *)&closure->tramp [6] = 0x0004;
*(short *)&closure->tramp [8] = 0x07f1; /* br %r1 */
*(long *)&closure->tramp[16] = (long)codeloc;
*(long *)&closure->tramp[24] = (long)&ffi_closure_SYSV;
#endif
memcpy (tramp, template, sizeof(template));
tramp[2] = (unsigned long)codeloc;
tramp[3] = (unsigned long)&ffi_closure_SYSV;
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
/*======================== End of Routine ============================*/
/* Build a Go language closure. */
ffi_status
ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif *cif,
void (*fun)(ffi_cif*,void*,void**,void*))
{
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
closure->tramp = ffi_go_closure_SYSV;
closure->cif = cif;
closure->fun = fun;
return FFI_OK;
}

View File

@@ -58,6 +58,7 @@ typedef enum ffi_abi {
/* ---- Definitions for closures ----------------------------------------- */
#define FFI_CLOSURES 1
#define FFI_GO_CLOSURES 1
#ifdef S390X
#define FFI_TRAMPOLINE_SIZE 32
#else

11
src/s390/internal.h Normal file
View File

@@ -0,0 +1,11 @@
/* If these values change, sysv.S must be adapted! */
#define FFI390_RET_DOUBLE 0
#define FFI390_RET_FLOAT 1
#define FFI390_RET_INT64 2
#define FFI390_RET_INT32 3
#define FFI390_RET_VOID 4
#define FFI360_RET_MASK 7
#define FFI390_RET_IN_MEM 8
#define FFI390_RET_STRUCT (FFI390_RET_VOID | FFI390_RET_IN_MEM)

View File

@@ -29,405 +29,296 @@
#include <fficonfig.h>
#include <ffi.h>
.text
#ifndef __s390x__
.text
# r2: cif->bytes
# r3: &ecif
# r4: ffi_prep_args
# r5: ret_type
# r6: ecif.rvalue
# ov: fn
# r2: frame
# r3: ret_type
# r4: ret_addr
# r5: fun
# r6: closure
# This assumes we are using gas.
.balign 8
.globl ffi_call_SYSV
FFI_HIDDEN(ffi_call_SYSV)
.type ffi_call_SYSV,%function
ffi_call_SYSV:
.LFB1:
stm %r6,%r15,24(%r15) # Save registers
.LCFI0:
basr %r13,0 # Set up base register
.Lbase:
lr %r11,%r15 # Set up frame pointer
.LCFI1:
sr %r15,%r2
ahi %r15,-96-48 # Allocate stack
lr %r8,%r6 # Save ecif.rvalue
sr %r9,%r9
ic %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address
l %r7,96(%r11) # Load function address
st %r11,0(%r15) # Set up back chain
ahi %r11,-48 # Register save area
.LCFI2:
.cfi_startproc
st %r6,44(%r2) # Save registers
stm %r12,%r14,48(%r2)
lr %r13,%r2 # Install frame pointer
.cfi_rel_offset r6, 44
.cfi_rel_offset r12, 48
.cfi_rel_offset r13, 52
.cfi_rel_offset r14, 56
.cfi_def_cfa_register r13
st %r2,0(%r15) # Set up back chain
sla %r3,3 # ret_type *= 8
lr %r12,%r4 # Save ret_addr
lr %r1,%r5 # Save fun
lr %r0,%r6 # Install static chain
la %r2,96(%r15) # Save area
# r3 already holds &ecif
basr %r14,%r4 # Call ffi_prep_args
# Set return address, so that there is only one indirect jump.
#ifdef HAVE_AS_S390_ZARCH
larl %r14,.Ltable
ar %r14,%r3
#else
basr %r14,0
0: la %r14,.Ltable-0b(%r14,%r3)
#endif
lm %r2,%r6,0(%r11) # Load arguments
ld %f0,32(%r11)
ld %f2,40(%r11)
la %r14,0(%r13,%r9) # Set return address
br %r7 # ... and call function
.LretNone: # Return void
l %r4,48+56(%r11)
lm %r6,%r15,48+24(%r11)
br %r4
.LretFloat:
l %r4,48+56(%r11)
ste %f0,0(%r8) # Return float
lm %r6,%r15,48+24(%r11)
br %r4
.LretDouble:
l %r4,48+56(%r11)
std %f0,0(%r8) # Return double
lm %r6,%r15,48+24(%r11)
br %r4
.LretInt32:
l %r4,48+56(%r11)
st %r2,0(%r8) # Return int
lm %r6,%r15,48+24(%r11)
br %r4
.LretInt64:
l %r4,48+56(%r11)
stm %r2,%r3,0(%r8) # Return long long
lm %r6,%r15,48+24(%r11)
br %r4
lm %r2,%r6,8(%r13) # Load arguments
ld %f0,64(%r13)
ld %f2,72(%r13)
br %r1 # ... and call function
.balign 8
.Ltable:
.byte .LretNone-.Lbase # FFI390_RET_VOID
.byte .LretNone-.Lbase # FFI390_RET_STRUCT
.byte .LretFloat-.Lbase # FFI390_RET_FLOAT
.byte .LretDouble-.Lbase # FFI390_RET_DOUBLE
.byte .LretInt32-.Lbase # FFI390_RET_INT32
.byte .LretInt64-.Lbase # FFI390_RET_INT64
# FFI390_RET_DOUBLE
std %f0,0(%r12)
j .Ldone
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.balign 8
# FFI390_RET_FLOAT
ste %f0,0(%r12)
j .Ldone
.balign 8
# FFI390_RET_INT64
st %r3,4(%r12)
nop
# fallthru
.balign 8
# FFI390_RET_INT32
st %r2,0(%r12)
nop
# fallthru
.balign 8
# FFI390_RET_VOID
.Ldone:
l %r14,56(%r13)
l %r12,48(%r13)
l %r6,44(%r13)
l %r13,52(%r13)
.cfi_restore 14
.cfi_restore 13
.cfi_restore 12
.cfi_restore 6
.cfi_def_cfa r15, 96
br %r14
.cfi_endproc
.size ffi_call_SYSV,.-ffi_call_SYSV
.balign 8
.globl ffi_go_closure_SYSV
FFI_HIDDEN(ffi_go_closure_SYSV)
.type ffi_go_closure_SYSV,%function
ffi_go_closure_SYSV:
.cfi_startproc
stm %r2,%r6,8(%r15) # Save arguments
lr %r4,%r0 # Load closure -> user_data
l %r2,4(%r4) # ->cif
l %r3,8(%r4) # ->fun
j .Ldoclosure
.cfi_endproc
.balign 8
.globl ffi_closure_SYSV
FFI_HIDDEN(ffi_closure_SYSV)
.type ffi_closure_SYSV,%function
ffi_closure_SYSV:
.LFB2:
.cfi_startproc
stm %r2,%r6,8(%r15) # Save arguments
lr %r4,%r0 # Closure
l %r2,16(%r4) # ->cif
l %r3,20(%r4) # ->fun
l %r4,24(%r4) # ->user_data
.Ldoclosure:
stm %r12,%r15,48(%r15) # Save registers
.LCFI10:
lr %r12,%r15
.cfi_def_cfa_register r12
.cfi_rel_offset r6, 24
.cfi_rel_offset r12, 48
.cfi_rel_offset r13, 52
.cfi_rel_offset r14, 56
.cfi_rel_offset r15, 60
#ifndef HAVE_AS_S390_ZARCH
basr %r13,0 # Set up base register
.Lcbase:
stm %r2,%r6,8(%r15) # Save arguments
std %f0,64(%r15)
std %f2,72(%r15)
lr %r1,%r15 # Set up stack frame
ahi %r15,-96
.LCFI11:
l %r12,.Lchelper-.Lcbase(%r13) # Get helper function
lr %r2,%r0 # Closure
la %r3,8(%r1) # GPRs
la %r4,64(%r1) # FPRs
la %r5,96(%r1) # Overflow
st %r1,0(%r15) # Set up back chain
l %r1,.Lchelper-.Lcbase(%r13) # Get helper function
#endif
ahi %r15,-96-8 # Set up stack frame
st %r12,0(%r15) # Set up back chain
bas %r14,0(%r12,%r13) # Call helper
std %f0,64(%r12) # Save fp arguments
std %f2,72(%r12)
l %r4,96+56(%r15)
ld %f0,96+64(%r15) # Load return registers
lm %r2,%r3,96+8(%r15)
lm %r12,%r15,96+48(%r15)
br %r4
la %r5,96(%r12) # Overflow
st %r5,96(%r15)
la %r6,64(%r12) # FPRs
la %r5,8(%r12) # GPRs
#ifdef HAVE_AS_S390_ZARCH
brasl %r14,ffi_closure_helper_SYSV
#else
bas %r14,0(%r1,%r13) # Call helper
#endif
lr %r15,%r12
.cfi_def_cfa_register r15
lm %r12,%r14,48(%r12) # Restore saved registers
l %r6,24(%r15)
ld %f0,64(%r15) # Load return registers
lm %r2,%r3,8(%r15)
br %r14
.cfi_endproc
#ifndef HAVE_AS_S390_ZARCH
.align 4
.Lchelper:
.long ffi_closure_helper_SYSV-.Lcbase
#endif
.LFE2:
.ffi_closure_SYSV_end:
.size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.4byte .LECIE1-.LSCIE1 # Length of Common Information Entry
.LSCIE1:
.4byte 0x0 # CIE Identifier Tag
.byte 0x1 # CIE Version
.ascii "zR\0" # CIE Augmentation
.uleb128 0x1 # CIE Code Alignment Factor
.sleb128 -4 # CIE Data Alignment Factor
.byte 0xe # CIE RA Column
.uleb128 0x1 # Augmentation size
.byte 0x1b # FDE Encoding (pcrel sdata4)
.byte 0xc # DW_CFA_def_cfa
.uleb128 0xf
.uleb128 0x60
.align 4
.LECIE1:
.LSFDE1:
.4byte .LEFDE1-.LASFDE1 # FDE Length
.LASFDE1:
.4byte .LASFDE1-.Lframe1 # FDE CIE offset
.4byte .LFB1-. # FDE initial location
.4byte .LFE1-.LFB1 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI0-.LFB1
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x9
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0xa
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0xb
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0xc
.byte 0x8b # DW_CFA_offset, column 0xb
.uleb128 0xd
.byte 0x8a # DW_CFA_offset, column 0xa
.uleb128 0xe
.byte 0x89 # DW_CFA_offset, column 0x9
.uleb128 0xf
.byte 0x88 # DW_CFA_offset, column 0x8
.uleb128 0x10
.byte 0x87 # DW_CFA_offset, column 0x7
.uleb128 0x11
.byte 0x86 # DW_CFA_offset, column 0x6
.uleb128 0x12
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI1-.LCFI0
.byte 0xd # DW_CFA_def_cfa_register
.uleb128 0xb
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI2-.LCFI1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0x90
.align 4
.LEFDE1:
.LSFDE2:
.4byte .LEFDE2-.LASFDE2 # FDE Length
.LASFDE2:
.4byte .LASFDE2-.Lframe1 # FDE CIE offset
.4byte .LFB2-. # FDE initial location
.4byte .LFE2-.LFB2 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI10-.LFB2
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x9
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0xa
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0xb
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0xc
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI11-.LCFI10
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0xc0
.align 4
.LEFDE2:
.size ffi_closure_SYSV,.-ffi_closure_SYSV
#else
.text
# r2: cif->bytes
# r3: &ecif
# r4: ffi_prep_args
# r5: ret_type
# r6: ecif.rvalue
# ov: fn
# r2: frame
# r3: ret_type
# r4: ret_addr
# r5: fun
# r6: closure
# This assumes we are using gas.
.balign 8
.globl ffi_call_SYSV
FFI_HIDDEN(ffi_call_SYSV)
.type ffi_call_SYSV,%function
ffi_call_SYSV:
.LFB1:
stmg %r6,%r15,48(%r15) # Save registers
.LCFI0:
larl %r13,.Lbase # Set up base register
lgr %r11,%r15 # Set up frame pointer
.LCFI1:
sgr %r15,%r2
aghi %r15,-160-80 # Allocate stack
lgr %r8,%r6 # Save ecif.rvalue
llgc %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address
lg %r7,160(%r11) # Load function address
stg %r11,0(%r15) # Set up back chain
aghi %r11,-80 # Register save area
.LCFI2:
la %r2,160(%r15) # Save area
# r3 already holds &ecif
basr %r14,%r4 # Call ffi_prep_args
lmg %r2,%r6,0(%r11) # Load arguments
ld %f0,48(%r11)
ld %f2,56(%r11)
ld %f4,64(%r11)
ld %f6,72(%r11)
la %r14,0(%r13,%r9) # Set return address
br %r7 # ... and call function
.Lbase:
.LretNone: # Return void
lg %r4,80+112(%r11)
lmg %r6,%r15,80+48(%r11)
br %r4
.LretFloat:
lg %r4,80+112(%r11)
ste %f0,0(%r8) # Return float
lmg %r6,%r15,80+48(%r11)
br %r4
.LretDouble:
lg %r4,80+112(%r11)
std %f0,0(%r8) # Return double
lmg %r6,%r15,80+48(%r11)
br %r4
.LretInt32:
lg %r4,80+112(%r11)
st %r2,0(%r8) # Return int
lmg %r6,%r15,80+48(%r11)
br %r4
.LretInt64:
lg %r4,80+112(%r11)
stg %r2,0(%r8) # Return long
lmg %r6,%r15,80+48(%r11)
br %r4
.cfi_startproc
stg %r6,88(%r2) # Save registers
stmg %r12,%r14,96(%r2)
lgr %r13,%r2 # Install frame pointer
.cfi_rel_offset r6, 88
.cfi_rel_offset r12, 96
.cfi_rel_offset r13, 104
.cfi_rel_offset r14, 112
.cfi_def_cfa_register r13
stg %r2,0(%r15) # Set up back chain
larl %r14,.Ltable # Set up return address
slag %r3,%r3,3 # ret_type *= 8
lgr %r12,%r4 # Save ret_addr
lgr %r1,%r5 # Save fun
lgr %r0,%r6 # Install static chain
agr %r14,%r3
lmg %r2,%r6,16(%r13) # Load arguments
ld %f0,128(%r13)
ld %f2,136(%r13)
ld %f4,144(%r13)
ld %f6,152(%r13)
br %r1 # ... and call function
.balign 8
.Ltable:
.byte .LretNone-.Lbase # FFI390_RET_VOID
.byte .LretNone-.Lbase # FFI390_RET_STRUCT
.byte .LretFloat-.Lbase # FFI390_RET_FLOAT
.byte .LretDouble-.Lbase # FFI390_RET_DOUBLE
.byte .LretInt32-.Lbase # FFI390_RET_INT32
.byte .LretInt64-.Lbase # FFI390_RET_INT64
# FFI390_RET_DOUBLE
std %f0,0(%r12)
j .Ldone
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.balign 8
# FFI390_RET_DOUBLE
ste %f0,0(%r12)
j .Ldone
.balign 8
# FFI390_RET_INT64
stg %r2,0(%r12)
.balign 8
# FFI390_RET_INT32
# Never used, as we always store type ffi_arg.
# But the stg above is 6 bytes and we cannot
# jump around this case, so fall through.
nop
nop
.balign 8
# FFI390_RET_VOID
.Ldone:
lg %r14,112(%r13)
lg %r12,96(%r13)
lg %r6,88(%r13)
lg %r13,104(%r13)
.cfi_restore r14
.cfi_restore r13
.cfi_restore r12
.cfi_restore r6
.cfi_def_cfa r15, 160
br %r14
.cfi_endproc
.size ffi_call_SYSV,.-ffi_call_SYSV
.balign 8
.globl ffi_go_closure_SYSV
FFI_HIDDEN(ffi_go_closure_SYSV)
.type ffi_go_closure_SYSV,%function
ffi_go_closure_SYSV:
.cfi_startproc
stmg %r2,%r6,16(%r15) # Save arguments
lgr %r4,%r0 # Load closure -> user_data
lg %r2,8(%r4) # ->cif
lg %r3,16(%r4) # ->fun
j .Ldoclosure
.cfi_endproc
.size ffi_go_closure_SYSV,.-ffi_go_closure_SYSV
.balign 8
.globl ffi_closure_SYSV
FFI_HIDDEN(ffi_closure_SYSV)
.type ffi_closure_SYSV,%function
ffi_closure_SYSV:
.LFB2:
stmg %r14,%r15,112(%r15) # Save registers
.LCFI10:
.cfi_startproc
stmg %r2,%r6,16(%r15) # Save arguments
std %f0,128(%r15)
std %f2,136(%r15)
std %f4,144(%r15)
std %f6,152(%r15)
lgr %r1,%r15 # Set up stack frame
aghi %r15,-160
.LCFI11:
lgr %r2,%r0 # Closure
la %r3,16(%r1) # GPRs
la %r4,128(%r1) # FPRs
la %r5,160(%r1) # Overflow
stg %r1,0(%r15) # Set up back chain
lgr %r4,%r0 # Load closure
lg %r2,32(%r4) # ->cif
lg %r3,40(%r4) # ->fun
lg %r4,48(%r4) # ->user_data
.Ldoclosure:
stmg %r13,%r15,104(%r15) # Save registers
lgr %r13,%r15
.cfi_def_cfa_register r13
.cfi_rel_offset r6, 48
.cfi_rel_offset r13, 104
.cfi_rel_offset r14, 112
.cfi_rel_offset r15, 120
aghi %r15,-160-16 # Set up stack frame
stg %r13,0(%r15) # Set up back chain
std %f0,128(%r13) # Save fp arguments
std %f2,136(%r13)
std %f4,144(%r13)
std %f6,152(%r13)
la %r5,160(%r13) # Overflow
stg %r5,160(%r15)
la %r6,128(%r13) # FPRs
la %r5,16(%r13) # GPRs
brasl %r14,ffi_closure_helper_SYSV # Call helper
lg %r14,160+112(%r15)
ld %f0,160+128(%r15) # Load return registers
lg %r2,160+16(%r15)
la %r15,160(%r15)
lgr %r15,%r13
.cfi_def_cfa_register r15
lmg %r13,%r14,104(%r13) # Restore saved registers
lg %r6,48(%r15)
ld %f0,128(%r15) # Load return registers
lg %r2,16(%r15)
br %r14
.LFE2:
.ffi_closure_SYSV_end:
.size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.4byte .LECIE1-.LSCIE1 # Length of Common Information Entry
.LSCIE1:
.4byte 0x0 # CIE Identifier Tag
.byte 0x1 # CIE Version
.ascii "zR\0" # CIE Augmentation
.uleb128 0x1 # CIE Code Alignment Factor
.sleb128 -8 # CIE Data Alignment Factor
.byte 0xe # CIE RA Column
.uleb128 0x1 # Augmentation size
.byte 0x1b # FDE Encoding (pcrel sdata4)
.byte 0xc # DW_CFA_def_cfa
.uleb128 0xf
.uleb128 0xa0
.align 8
.LECIE1:
.LSFDE1:
.4byte .LEFDE1-.LASFDE1 # FDE Length
.LASFDE1:
.4byte .LASFDE1-.Lframe1 # FDE CIE offset
.4byte .LFB1-. # FDE initial location
.4byte .LFE1-.LFB1 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI0-.LFB1
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x5
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0x6
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0x7
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0x8
.byte 0x8b # DW_CFA_offset, column 0xb
.uleb128 0x9
.byte 0x8a # DW_CFA_offset, column 0xa
.uleb128 0xa
.byte 0x89 # DW_CFA_offset, column 0x9
.uleb128 0xb
.byte 0x88 # DW_CFA_offset, column 0x8
.uleb128 0xc
.byte 0x87 # DW_CFA_offset, column 0x7
.uleb128 0xd
.byte 0x86 # DW_CFA_offset, column 0x6
.uleb128 0xe
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI1-.LCFI0
.byte 0xd # DW_CFA_def_cfa_register
.uleb128 0xb
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI2-.LCFI1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0xf0
.align 8
.LEFDE1:
.LSFDE2:
.4byte .LEFDE2-.LASFDE2 # FDE Length
.LASFDE2:
.4byte .LASFDE2-.Lframe1 # FDE CIE offset
.4byte .LFB2-. # FDE initial location
.4byte .LFE2-.LFB2 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI10-.LFB2
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x5
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0x6
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI11-.LCFI10
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0x140
.align 8
.LEFDE2:
#endif
.cfi_endproc
.size ffi_closure_SYSV,.-ffi_closure_SYSV
#endif /* !s390x */
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits