Imported OpenSSL 1.1.1d
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
#! /usr/bin/env perl
|
||||
# Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
# Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the OpenSSL license (the "License"). You may not use
|
||||
# this file except in compliance with the License. You can obtain a copy
|
||||
@@ -2301,7 +2301,6 @@ my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
|
||||
# !in1infty, !in2infty and result of check for zero.
|
||||
|
||||
$code.=<<___;
|
||||
.globl ecp_nistz256_point_add_vis3
|
||||
.align 32
|
||||
ecp_nistz256_point_add_vis3:
|
||||
save %sp,-STACK64_FRAME-32*18-32,%sp
|
||||
|
||||
@@ -1301,7 +1301,7 @@ ecp_nistz256_ord_mul_montx:
|
||||
|
||||
################################# reduction
|
||||
mulx 8*0+128(%r14), $t0, $t1
|
||||
adcx $t0, $acc3 # guranteed to be zero
|
||||
adcx $t0, $acc3 # guaranteed to be zero
|
||||
adox $t1, $acc4
|
||||
|
||||
mulx 8*1+128(%r14), $t0, $t1
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#! /usr/bin/env perl
|
||||
# Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
# Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the OpenSSL license (the "License"). You may not use
|
||||
# this file except in compliance with the License. You can obtain a copy
|
||||
@@ -451,7 +451,7 @@ x25519_fe64_tobytes:
|
||||
and $t0,$t0,$t1
|
||||
sldi $a3,$a3,1
|
||||
add $t0,$t0,$t1 # compare to modulus in the same go
|
||||
srdi $a3,$a3,1 # most signifcant bit cleared
|
||||
srdi $a3,$a3,1 # most significant bit cleared
|
||||
|
||||
addc $a0,$a0,$t0
|
||||
addze $a1,$a1
|
||||
@@ -462,7 +462,7 @@ x25519_fe64_tobytes:
|
||||
sradi $t0,$a3,63 # most significant bit -> mask
|
||||
sldi $a3,$a3,1
|
||||
andc $t0,$t1,$t0
|
||||
srdi $a3,$a3,1 # most signifcant bit cleared
|
||||
srdi $a3,$a3,1 # most significant bit cleared
|
||||
|
||||
subi $rp,$rp,1
|
||||
subfc $a0,$t0,$a0
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
@@ -568,10 +568,12 @@ ECPKPARAMETERS *EC_GROUP_get_ecpkparameters(const EC_GROUP *group,
|
||||
EC_GROUP *EC_GROUP_new_from_ecparameters(const ECPARAMETERS *params)
|
||||
{
|
||||
int ok = 0, tmp;
|
||||
EC_GROUP *ret = NULL;
|
||||
EC_GROUP *ret = NULL, *dup = NULL;
|
||||
BIGNUM *p = NULL, *a = NULL, *b = NULL;
|
||||
EC_POINT *point = NULL;
|
||||
long field_bits;
|
||||
int curve_name = NID_undef;
|
||||
BN_CTX *ctx = NULL;
|
||||
|
||||
if (!params->fieldID || !params->fieldID->fieldType ||
|
||||
!params->fieldID->p.ptr) {
|
||||
@@ -789,18 +791,79 @@ EC_GROUP *EC_GROUP_new_from_ecparameters(const ECPARAMETERS *params)
|
||||
goto err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if the explicit parameters group just created matches one of the
|
||||
* built-in curves.
|
||||
*
|
||||
* We create a copy of the group just built, so that we can remove optional
|
||||
* fields for the lookup: we do this to avoid the possibility that one of
|
||||
* the optional parameters is used to force the library into using a less
|
||||
* performant and less secure EC_METHOD instead of the specialized one.
|
||||
* In any case, `seed` is not really used in any computation, while a
|
||||
* cofactor different from the one in the built-in table is just
|
||||
* mathematically wrong anyway and should not be used.
|
||||
*/
|
||||
if ((ctx = BN_CTX_new()) == NULL) {
|
||||
ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
if ((dup = EC_GROUP_dup(ret)) == NULL
|
||||
|| EC_GROUP_set_seed(dup, NULL, 0) != 1
|
||||
|| !EC_GROUP_set_generator(dup, point, a, NULL)) {
|
||||
ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB);
|
||||
goto err;
|
||||
}
|
||||
if ((curve_name = ec_curve_nid_from_params(dup, ctx)) != NID_undef) {
|
||||
/*
|
||||
* The input explicit parameters successfully matched one of the
|
||||
* built-in curves: often for built-in curves we have specialized
|
||||
* methods with better performance and hardening.
|
||||
*
|
||||
* In this case we replace the `EC_GROUP` created through explicit
|
||||
* parameters with one created from a named group.
|
||||
*/
|
||||
EC_GROUP *named_group = NULL;
|
||||
|
||||
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
|
||||
/*
|
||||
* NID_wap_wsg_idm_ecid_wtls12 and NID_secp224r1 are both aliases for
|
||||
* the same curve, we prefer the SECP nid when matching explicit
|
||||
* parameters as that is associated with a specialized EC_METHOD.
|
||||
*/
|
||||
if (curve_name == NID_wap_wsg_idm_ecid_wtls12)
|
||||
curve_name = NID_secp224r1;
|
||||
#endif /* !def(OPENSSL_NO_EC_NISTP_64_GCC_128) */
|
||||
|
||||
if ((named_group = EC_GROUP_new_by_curve_name(curve_name)) == NULL) {
|
||||
ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB);
|
||||
goto err;
|
||||
}
|
||||
EC_GROUP_free(ret);
|
||||
ret = named_group;
|
||||
|
||||
/*
|
||||
* Set the flag so that EC_GROUPs created from explicit parameters are
|
||||
* serialized using explicit parameters by default.
|
||||
*/
|
||||
EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_EXPLICIT_CURVE);
|
||||
}
|
||||
|
||||
ok = 1;
|
||||
|
||||
err:
|
||||
if (!ok) {
|
||||
EC_GROUP_clear_free(ret);
|
||||
EC_GROUP_free(ret);
|
||||
ret = NULL;
|
||||
}
|
||||
EC_GROUP_free(dup);
|
||||
|
||||
BN_free(p);
|
||||
BN_free(a);
|
||||
BN_free(b);
|
||||
EC_POINT_free(point);
|
||||
|
||||
BN_CTX_free(ctx);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -861,7 +924,7 @@ EC_GROUP *d2i_ECPKParameters(EC_GROUP **a, const unsigned char **in, long len)
|
||||
}
|
||||
|
||||
if (a) {
|
||||
EC_GROUP_clear_free(*a);
|
||||
EC_GROUP_free(*a);
|
||||
*a = group;
|
||||
}
|
||||
|
||||
@@ -909,7 +972,7 @@ EC_KEY *d2i_ECPrivateKey(EC_KEY **a, const unsigned char **in, long len)
|
||||
ret = *a;
|
||||
|
||||
if (priv_key->parameters) {
|
||||
EC_GROUP_clear_free(ret->group);
|
||||
EC_GROUP_free(ret->group);
|
||||
ret->group = EC_GROUP_new_from_ecpkparameters(priv_key->parameters);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
@@ -3197,3 +3197,115 @@ int EC_curve_nist2nid(const char *name)
|
||||
}
|
||||
return NID_undef;
|
||||
}
|
||||
|
||||
#define NUM_BN_FIELDS 6
|
||||
/*
|
||||
* Validates EC domain parameter data for known named curves.
|
||||
* This can be used when a curve is loaded explicitly (without a curve
|
||||
* name) or to validate that domain parameters have not been modified.
|
||||
*
|
||||
* Returns: The nid associated with the found named curve, or NID_undef
|
||||
* if not found. If there was an error it returns -1.
|
||||
*/
|
||||
int ec_curve_nid_from_params(const EC_GROUP *group, BN_CTX *ctx)
|
||||
{
|
||||
int ret = -1, nid, len, field_type, param_len;
|
||||
size_t i, seed_len;
|
||||
const unsigned char *seed, *params_seed, *params;
|
||||
unsigned char *param_bytes = NULL;
|
||||
const EC_CURVE_DATA *data;
|
||||
const EC_POINT *generator = NULL;
|
||||
const EC_METHOD *meth;
|
||||
const BIGNUM *cofactor = NULL;
|
||||
/* An array of BIGNUMs for (p, a, b, x, y, order) */
|
||||
BIGNUM *bn[NUM_BN_FIELDS] = {NULL, NULL, NULL, NULL, NULL, NULL};
|
||||
|
||||
meth = EC_GROUP_method_of(group);
|
||||
if (meth == NULL)
|
||||
return -1;
|
||||
/* Use the optional named curve nid as a search field */
|
||||
nid = EC_GROUP_get_curve_name(group);
|
||||
field_type = EC_METHOD_get_field_type(meth);
|
||||
seed_len = EC_GROUP_get_seed_len(group);
|
||||
seed = EC_GROUP_get0_seed(group);
|
||||
cofactor = EC_GROUP_get0_cofactor(group);
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
|
||||
/*
|
||||
* The built-in curves contains data fields (p, a, b, x, y, order) that are
|
||||
* all zero-padded to be the same size. The size of the padding is
|
||||
* determined by either the number of bytes in the field modulus (p) or the
|
||||
* EC group order, whichever is larger.
|
||||
*/
|
||||
param_len = BN_num_bytes(group->order);
|
||||
len = BN_num_bytes(group->field);
|
||||
if (len > param_len)
|
||||
param_len = len;
|
||||
|
||||
/* Allocate space to store the padded data for (p, a, b, x, y, order) */
|
||||
param_bytes = OPENSSL_malloc(param_len * NUM_BN_FIELDS);
|
||||
if (param_bytes == NULL)
|
||||
goto end;
|
||||
|
||||
/* Create the bignums */
|
||||
for (i = 0; i < NUM_BN_FIELDS; ++i) {
|
||||
if ((bn[i] = BN_CTX_get(ctx)) == NULL)
|
||||
goto end;
|
||||
}
|
||||
/*
|
||||
* Fill in the bn array with the same values as the internal curves
|
||||
* i.e. the values are p, a, b, x, y, order.
|
||||
*/
|
||||
/* Get p, a & b */
|
||||
if (!(EC_GROUP_get_curve(group, bn[0], bn[1], bn[2], ctx)
|
||||
&& ((generator = EC_GROUP_get0_generator(group)) != NULL)
|
||||
/* Get x & y */
|
||||
&& EC_POINT_get_affine_coordinates(group, generator, bn[3], bn[4], ctx)
|
||||
/* Get order */
|
||||
&& EC_GROUP_get_order(group, bn[5], ctx)))
|
||||
goto end;
|
||||
|
||||
/*
|
||||
* Convert the bignum array to bytes that are joined together to form
|
||||
* a single buffer that contains data for all fields.
|
||||
* (p, a, b, x, y, order) are all zero padded to be the same size.
|
||||
*/
|
||||
for (i = 0; i < NUM_BN_FIELDS; ++i) {
|
||||
if (BN_bn2binpad(bn[i], ¶m_bytes[i*param_len], param_len) <= 0)
|
||||
goto end;
|
||||
}
|
||||
|
||||
for (i = 0; i < curve_list_length; i++) {
|
||||
const ec_list_element curve = curve_list[i];
|
||||
|
||||
data = curve.data;
|
||||
/* Get the raw order byte data */
|
||||
params_seed = (const unsigned char *)(data + 1); /* skip header */
|
||||
params = params_seed + data->seed_len;
|
||||
|
||||
/* Look for unique fields in the fixed curve data */
|
||||
if (data->field_type == field_type
|
||||
&& param_len == data->param_len
|
||||
&& (nid <= 0 || nid == curve.nid)
|
||||
/* check the optional cofactor (ignore if its zero) */
|
||||
&& (BN_is_zero(cofactor)
|
||||
|| BN_is_word(cofactor, (const BN_ULONG)curve.data->cofactor))
|
||||
/* Check the optional seed (ignore if its not set) */
|
||||
&& (data->seed_len == 0 || seed_len == 0
|
||||
|| ((size_t)data->seed_len == seed_len
|
||||
&& memcmp(params_seed, seed, seed_len) == 0))
|
||||
/* Check that the groups params match the built-in curve params */
|
||||
&& memcmp(param_bytes, params, param_len * NUM_BN_FIELDS)
|
||||
== 0) {
|
||||
ret = curve.nid;
|
||||
goto end;
|
||||
}
|
||||
}
|
||||
/* Gets here if the group was not found */
|
||||
ret = NID_undef;
|
||||
end:
|
||||
OPENSSL_free(param_bytes);
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -154,7 +154,7 @@ struct ec_method_st {
|
||||
int (*field_div) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
||||
const BIGNUM *b, BN_CTX *);
|
||||
/*-
|
||||
* 'field_inv' computes the multipicative inverse of a in the field,
|
||||
* 'field_inv' computes the multiplicative inverse of a in the field,
|
||||
* storing the result in r.
|
||||
*
|
||||
* If 'a' is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.
|
||||
@@ -595,6 +595,8 @@ int ec_key_simple_generate_key(EC_KEY *eckey);
|
||||
int ec_key_simple_generate_public_key(EC_KEY *eckey);
|
||||
int ec_key_simple_check_key(const EC_KEY *eckey);
|
||||
|
||||
int ec_curve_nid_from_params(const EC_GROUP *group, BN_CTX *ctx);
|
||||
|
||||
/* EC_METHOD definitions */
|
||||
|
||||
struct ec_key_method_st {
|
||||
|
||||
@@ -265,6 +265,67 @@ int EC_METHOD_get_field_type(const EC_METHOD *meth)
|
||||
|
||||
static int ec_precompute_mont_data(EC_GROUP *);
|
||||
|
||||
/*-
|
||||
* Try computing cofactor from the generator order (n) and field cardinality (q).
|
||||
* This works for all curves of cryptographic interest.
|
||||
*
|
||||
* Hasse thm: q + 1 - 2*sqrt(q) <= n*h <= q + 1 + 2*sqrt(q)
|
||||
* h_min = (q + 1 - 2*sqrt(q))/n
|
||||
* h_max = (q + 1 + 2*sqrt(q))/n
|
||||
* h_max - h_min = 4*sqrt(q)/n
|
||||
* So if n > 4*sqrt(q) holds, there is only one possible value for h:
|
||||
* h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil
|
||||
*
|
||||
* Otherwise, zero cofactor and return success.
|
||||
*/
|
||||
static int ec_guess_cofactor(EC_GROUP *group) {
|
||||
int ret = 0;
|
||||
BN_CTX *ctx = NULL;
|
||||
BIGNUM *q = NULL;
|
||||
|
||||
/*-
|
||||
* If the cofactor is too large, we cannot guess it.
|
||||
* The RHS of below is a strict overestimate of lg(4 * sqrt(q))
|
||||
*/
|
||||
if (BN_num_bits(group->order) <= (BN_num_bits(group->field) + 1) / 2 + 3) {
|
||||
/* default to 0 */
|
||||
BN_zero(group->cofactor);
|
||||
/* return success */
|
||||
return 1;
|
||||
}
|
||||
|
||||
if ((ctx = BN_CTX_new()) == NULL)
|
||||
return 0;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
if ((q = BN_CTX_get(ctx)) == NULL)
|
||||
goto err;
|
||||
|
||||
/* set q = 2**m for binary fields; q = p otherwise */
|
||||
if (group->meth->field_type == NID_X9_62_characteristic_two_field) {
|
||||
BN_zero(q);
|
||||
if (!BN_set_bit(q, BN_num_bits(group->field) - 1))
|
||||
goto err;
|
||||
} else {
|
||||
if (!BN_copy(q, group->field))
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* compute h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2)/n \rfloor */
|
||||
if (!BN_rshift1(group->cofactor, group->order) /* n/2 */
|
||||
|| !BN_add(group->cofactor, group->cofactor, q) /* q + n/2 */
|
||||
/* q + 1 + n/2 */
|
||||
|| !BN_add(group->cofactor, group->cofactor, BN_value_one())
|
||||
/* (q + 1 + n/2)/n */
|
||||
|| !BN_div(group->cofactor, NULL, group->cofactor, group->order, ctx))
|
||||
goto err;
|
||||
ret = 1;
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
BN_CTX_free(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
||||
const BIGNUM *order, const BIGNUM *cofactor)
|
||||
{
|
||||
@@ -273,6 +334,34 @@ int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* require group->field >= 1 */
|
||||
if (group->field == NULL || BN_is_zero(group->field)
|
||||
|| BN_is_negative(group->field)) {
|
||||
ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_FIELD);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*-
|
||||
* - require order >= 1
|
||||
* - enforce upper bound due to Hasse thm: order can be no more than one bit
|
||||
* longer than field cardinality
|
||||
*/
|
||||
if (order == NULL || BN_is_zero(order) || BN_is_negative(order)
|
||||
|| BN_num_bits(order) > BN_num_bits(group->field) + 1) {
|
||||
ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_GROUP_ORDER);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*-
|
||||
* Unfortunately the cofactor is an optional field in many standards.
|
||||
* Internally, the lib uses 0 cofactor as a marker for "unknown cofactor".
|
||||
* So accept cofactor == NULL or cofactor >= 0.
|
||||
*/
|
||||
if (cofactor != NULL && BN_is_negative(cofactor)) {
|
||||
ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_UNKNOWN_COFACTOR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (group->generator == NULL) {
|
||||
group->generator = EC_POINT_new(group);
|
||||
if (group->generator == NULL)
|
||||
@@ -281,17 +370,17 @@ int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
||||
if (!EC_POINT_copy(group->generator, generator))
|
||||
return 0;
|
||||
|
||||
if (order != NULL) {
|
||||
if (!BN_copy(group->order, order))
|
||||
return 0;
|
||||
} else
|
||||
BN_zero(group->order);
|
||||
if (!BN_copy(group->order, order))
|
||||
return 0;
|
||||
|
||||
if (cofactor != NULL) {
|
||||
/* Either take the provided positive cofactor, or try to compute it */
|
||||
if (cofactor != NULL && !BN_is_zero(cofactor)) {
|
||||
if (!BN_copy(group->cofactor, cofactor))
|
||||
return 0;
|
||||
} else
|
||||
} else if (!ec_guess_cofactor(group)) {
|
||||
BN_zero(group->cofactor);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Some groups have an order with
|
||||
|
||||
@@ -58,7 +58,7 @@ int ecdh_simple_compute_key(unsigned char **pout, size_t *poutlen,
|
||||
|
||||
priv_key = EC_KEY_get0_private_key(ecdh);
|
||||
if (priv_key == NULL) {
|
||||
ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_NO_PRIVATE_VALUE);
|
||||
ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_MISSING_PRIVATE_KEY);
|
||||
goto err;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
@@ -41,11 +41,16 @@ static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in,
|
||||
const EC_GROUP *group;
|
||||
int ret = 0;
|
||||
int order_bits;
|
||||
const BIGNUM *priv_key;
|
||||
|
||||
if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) {
|
||||
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_PASSED_NULL_PARAMETER);
|
||||
return 0;
|
||||
}
|
||||
if ((priv_key = EC_KEY_get0_private_key(eckey)) == NULL) {
|
||||
ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_MISSING_PRIVATE_KEY);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!EC_KEY_can_sign(eckey)) {
|
||||
ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING);
|
||||
@@ -83,8 +88,7 @@ static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in,
|
||||
/* get random k */
|
||||
do {
|
||||
if (dgst != NULL) {
|
||||
if (!BN_generate_dsa_nonce(k, order,
|
||||
EC_KEY_get0_private_key(eckey),
|
||||
if (!BN_generate_dsa_nonce(k, order, priv_key,
|
||||
dgst, dlen, ctx)) {
|
||||
ECerr(EC_F_ECDSA_SIGN_SETUP,
|
||||
EC_R_RANDOM_NUMBER_GENERATION_FAILED);
|
||||
@@ -162,10 +166,14 @@ ECDSA_SIG *ossl_ecdsa_sign_sig(const unsigned char *dgst, int dgst_len,
|
||||
group = EC_KEY_get0_group(eckey);
|
||||
priv_key = EC_KEY_get0_private_key(eckey);
|
||||
|
||||
if (group == NULL || priv_key == NULL) {
|
||||
if (group == NULL) {
|
||||
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_PASSED_NULL_PARAMETER);
|
||||
return NULL;
|
||||
}
|
||||
if (priv_key == NULL) {
|
||||
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, EC_R_MISSING_PRIVATE_KEY);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!EC_KEY_can_sign(eckey)) {
|
||||
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING);
|
||||
|
||||
@@ -324,34 +324,21 @@ static void felem_to_bin28(u8 out[28], const felem in)
|
||||
}
|
||||
}
|
||||
|
||||
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
|
||||
static void flip_endian(u8 *out, const u8 *in, unsigned len)
|
||||
{
|
||||
unsigned i;
|
||||
for (i = 0; i < len; ++i)
|
||||
out[i] = in[len - 1 - i];
|
||||
}
|
||||
|
||||
/* From OpenSSL BIGNUM to internal representation */
|
||||
static int BN_to_felem(felem out, const BIGNUM *bn)
|
||||
{
|
||||
felem_bytearray b_in;
|
||||
felem_bytearray b_out;
|
||||
unsigned num_bytes;
|
||||
int num_bytes;
|
||||
|
||||
/* BN_bn2bin eats leading zeroes */
|
||||
memset(b_out, 0, sizeof(b_out));
|
||||
num_bytes = BN_num_bytes(bn);
|
||||
if (num_bytes > sizeof(b_out)) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
if (BN_is_negative(bn)) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
num_bytes = BN_bn2bin(bn, b_in);
|
||||
flip_endian(b_out, b_in, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
|
||||
if (num_bytes < 0) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
bin28_to_felem(out, b_out);
|
||||
return 1;
|
||||
}
|
||||
@@ -359,10 +346,9 @@ static int BN_to_felem(felem out, const BIGNUM *bn)
|
||||
/* From internal representation to OpenSSL BIGNUM */
|
||||
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
|
||||
{
|
||||
felem_bytearray b_in, b_out;
|
||||
felem_to_bin28(b_in, in);
|
||||
flip_endian(b_out, b_in, sizeof(b_out));
|
||||
return BN_bin2bn(b_out, sizeof(b_out), out);
|
||||
felem_bytearray b_out;
|
||||
felem_to_bin28(b_out, in);
|
||||
return BN_lebin2bn(b_out, sizeof(b_out), out);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
@@ -1402,8 +1388,7 @@ int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
felem_bytearray *secrets = NULL;
|
||||
felem (*pre_comp)[17][3] = NULL;
|
||||
felem *tmp_felems = NULL;
|
||||
felem_bytearray tmp;
|
||||
unsigned num_bytes;
|
||||
int num_bytes;
|
||||
int have_pre_comp = 0;
|
||||
size_t num_points = num;
|
||||
felem x_in, y_in, z_in, x_out, y_out, z_out;
|
||||
@@ -1478,14 +1463,12 @@ int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
* i.e., they contribute nothing to the linear combination
|
||||
*/
|
||||
for (i = 0; i < num_points; ++i) {
|
||||
if (i == num)
|
||||
if (i == num) {
|
||||
/* the generator */
|
||||
{
|
||||
p = EC_GROUP_get0_generator(group);
|
||||
p_scalar = scalar;
|
||||
} else
|
||||
} else {
|
||||
/* the i^th point */
|
||||
{
|
||||
p = points[i];
|
||||
p_scalar = scalars[i];
|
||||
}
|
||||
@@ -1501,10 +1484,16 @@ int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
num_bytes = BN_bn2bin(tmp_scalar, tmp);
|
||||
} else
|
||||
num_bytes = BN_bn2bin(p_scalar, tmp);
|
||||
flip_endian(secrets[i], tmp, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(tmp_scalar,
|
||||
secrets[i], sizeof(secrets[i]));
|
||||
} else {
|
||||
num_bytes = BN_bn2lebinpad(p_scalar,
|
||||
secrets[i], sizeof(secrets[i]));
|
||||
}
|
||||
if (num_bytes < 0) {
|
||||
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
/* precompute multiples */
|
||||
if ((!BN_to_felem(x_out, p->X)) ||
|
||||
(!BN_to_felem(y_out, p->Y)) ||
|
||||
@@ -1547,20 +1536,21 @@ int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
num_bytes = BN_bn2bin(tmp_scalar, tmp);
|
||||
} else
|
||||
num_bytes = BN_bn2bin(scalar, tmp);
|
||||
flip_endian(g_secret, tmp, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
|
||||
} else {
|
||||
num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
|
||||
}
|
||||
/* do the multiplication with generator precomputation */
|
||||
batch_mul(x_out, y_out, z_out,
|
||||
(const felem_bytearray(*))secrets, num_points,
|
||||
g_secret,
|
||||
mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
|
||||
} else
|
||||
} else {
|
||||
/* do the multiplication without generator precomputation */
|
||||
batch_mul(x_out, y_out, z_out,
|
||||
(const felem_bytearray(*))secrets, num_points,
|
||||
NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
|
||||
}
|
||||
/* reduce the output to its unique minimal representation */
|
||||
felem_contract(x_in, x_out);
|
||||
felem_contract(y_in, y_out);
|
||||
|
||||
@@ -146,34 +146,21 @@ static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
|
||||
*((u64 *)&out[24]) = in[3];
|
||||
}
|
||||
|
||||
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
|
||||
static void flip_endian(u8 *out, const u8 *in, unsigned len)
|
||||
{
|
||||
unsigned i;
|
||||
for (i = 0; i < len; ++i)
|
||||
out[i] = in[len - 1 - i];
|
||||
}
|
||||
|
||||
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
|
||||
static int BN_to_felem(felem out, const BIGNUM *bn)
|
||||
{
|
||||
felem_bytearray b_in;
|
||||
felem_bytearray b_out;
|
||||
unsigned num_bytes;
|
||||
int num_bytes;
|
||||
|
||||
/* BN_bn2bin eats leading zeroes */
|
||||
memset(b_out, 0, sizeof(b_out));
|
||||
num_bytes = BN_num_bytes(bn);
|
||||
if (num_bytes > sizeof(b_out)) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
if (BN_is_negative(bn)) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
num_bytes = BN_bn2bin(bn, b_in);
|
||||
flip_endian(b_out, b_in, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
|
||||
if (num_bytes < 0) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
bin32_to_felem(out, b_out);
|
||||
return 1;
|
||||
}
|
||||
@@ -181,10 +168,9 @@ static int BN_to_felem(felem out, const BIGNUM *bn)
|
||||
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
|
||||
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
|
||||
{
|
||||
felem_bytearray b_in, b_out;
|
||||
smallfelem_to_bin32(b_in, in);
|
||||
flip_endian(b_out, b_in, sizeof(b_out));
|
||||
return BN_bin2bn(b_out, sizeof(b_out), out);
|
||||
felem_bytearray b_out;
|
||||
smallfelem_to_bin32(b_out, in);
|
||||
return BN_lebin2bn(b_out, sizeof(b_out), out);
|
||||
}
|
||||
|
||||
/*-
|
||||
@@ -2024,8 +2010,8 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
felem_bytearray *secrets = NULL;
|
||||
smallfelem (*pre_comp)[17][3] = NULL;
|
||||
smallfelem *tmp_smallfelems = NULL;
|
||||
felem_bytearray tmp;
|
||||
unsigned i, num_bytes;
|
||||
unsigned i;
|
||||
int num_bytes;
|
||||
int have_pre_comp = 0;
|
||||
size_t num_points = num;
|
||||
smallfelem x_in, y_in, z_in;
|
||||
@@ -2102,17 +2088,15 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
memset(secrets, 0, sizeof(*secrets) * num_points);
|
||||
memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
|
||||
for (i = 0; i < num_points; ++i) {
|
||||
if (i == num)
|
||||
if (i == num) {
|
||||
/*
|
||||
* we didn't have a valid precomputation, so we pick the
|
||||
* generator
|
||||
*/
|
||||
{
|
||||
p = EC_GROUP_get0_generator(group);
|
||||
p_scalar = scalar;
|
||||
} else
|
||||
} else {
|
||||
/* the i^th point */
|
||||
{
|
||||
p = points[i];
|
||||
p_scalar = scalars[i];
|
||||
}
|
||||
@@ -2128,10 +2112,16 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
num_bytes = BN_bn2bin(tmp_scalar, tmp);
|
||||
} else
|
||||
num_bytes = BN_bn2bin(p_scalar, tmp);
|
||||
flip_endian(secrets[i], tmp, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(tmp_scalar,
|
||||
secrets[i], sizeof(secrets[i]));
|
||||
} else {
|
||||
num_bytes = BN_bn2lebinpad(p_scalar,
|
||||
secrets[i], sizeof(secrets[i]));
|
||||
}
|
||||
if (num_bytes < 0) {
|
||||
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
/* precompute multiples */
|
||||
if ((!BN_to_felem(x_out, p->X)) ||
|
||||
(!BN_to_felem(y_out, p->Y)) ||
|
||||
@@ -2176,20 +2166,21 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
num_bytes = BN_bn2bin(tmp_scalar, tmp);
|
||||
} else
|
||||
num_bytes = BN_bn2bin(scalar, tmp);
|
||||
flip_endian(g_secret, tmp, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
|
||||
} else {
|
||||
num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
|
||||
}
|
||||
/* do the multiplication with generator precomputation */
|
||||
batch_mul(x_out, y_out, z_out,
|
||||
(const felem_bytearray(*))secrets, num_points,
|
||||
g_secret,
|
||||
mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
|
||||
} else
|
||||
} else {
|
||||
/* do the multiplication without generator precomputation */
|
||||
batch_mul(x_out, y_out, z_out,
|
||||
(const felem_bytearray(*))secrets, num_points,
|
||||
NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
|
||||
}
|
||||
/* reduce the output to its unique minimal representation */
|
||||
felem_contract(x_in, x_out);
|
||||
felem_contract(y_in, y_out);
|
||||
|
||||
@@ -169,34 +169,21 @@ static void felem_to_bin66(u8 out[66], const felem in)
|
||||
(*((limb *) & out[58])) = in[8];
|
||||
}
|
||||
|
||||
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
|
||||
static void flip_endian(u8 *out, const u8 *in, unsigned len)
|
||||
{
|
||||
unsigned i;
|
||||
for (i = 0; i < len; ++i)
|
||||
out[i] = in[len - 1 - i];
|
||||
}
|
||||
|
||||
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
|
||||
static int BN_to_felem(felem out, const BIGNUM *bn)
|
||||
{
|
||||
felem_bytearray b_in;
|
||||
felem_bytearray b_out;
|
||||
unsigned num_bytes;
|
||||
int num_bytes;
|
||||
|
||||
/* BN_bn2bin eats leading zeroes */
|
||||
memset(b_out, 0, sizeof(b_out));
|
||||
num_bytes = BN_num_bytes(bn);
|
||||
if (num_bytes > sizeof(b_out)) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
if (BN_is_negative(bn)) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
num_bytes = BN_bn2bin(bn, b_in);
|
||||
flip_endian(b_out, b_in, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
|
||||
if (num_bytes < 0) {
|
||||
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
||||
return 0;
|
||||
}
|
||||
bin66_to_felem(out, b_out);
|
||||
return 1;
|
||||
}
|
||||
@@ -204,10 +191,9 @@ static int BN_to_felem(felem out, const BIGNUM *bn)
|
||||
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
|
||||
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
|
||||
{
|
||||
felem_bytearray b_in, b_out;
|
||||
felem_to_bin66(b_in, in);
|
||||
flip_endian(b_out, b_in, sizeof(b_out));
|
||||
return BN_bin2bn(b_out, sizeof(b_out), out);
|
||||
felem_bytearray b_out;
|
||||
felem_to_bin66(b_out, in);
|
||||
return BN_lebin2bn(b_out, sizeof(b_out), out);
|
||||
}
|
||||
|
||||
/*-
|
||||
@@ -1269,7 +1255,7 @@ static void point_add(felem x3, felem y3, felem z3,
|
||||
* ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
|
||||
* 71e913863f7, in that case the penultimate intermediate is -9G and
|
||||
* the final digit is also -9G. Since this only happens for a single
|
||||
* scalar, the timing leak is irrelevent. (Any attacker who wanted to
|
||||
* scalar, the timing leak is irrelevant. (Any attacker who wanted to
|
||||
* check whether a secret scalar was that exact value, can already do
|
||||
* so.)
|
||||
*/
|
||||
@@ -1866,8 +1852,8 @@ int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
felem_bytearray *secrets = NULL;
|
||||
felem (*pre_comp)[17][3] = NULL;
|
||||
felem *tmp_felems = NULL;
|
||||
felem_bytearray tmp;
|
||||
unsigned i, num_bytes;
|
||||
unsigned i;
|
||||
int num_bytes;
|
||||
int have_pre_comp = 0;
|
||||
size_t num_points = num;
|
||||
felem x_in, y_in, z_in, x_out, y_out, z_out;
|
||||
@@ -1942,17 +1928,15 @@ int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
* i.e., they contribute nothing to the linear combination
|
||||
*/
|
||||
for (i = 0; i < num_points; ++i) {
|
||||
if (i == num)
|
||||
if (i == num) {
|
||||
/*
|
||||
* we didn't have a valid precomputation, so we pick the
|
||||
* generator
|
||||
*/
|
||||
{
|
||||
p = EC_GROUP_get0_generator(group);
|
||||
p_scalar = scalar;
|
||||
} else
|
||||
} else {
|
||||
/* the i^th point */
|
||||
{
|
||||
p = points[i];
|
||||
p_scalar = scalars[i];
|
||||
}
|
||||
@@ -1968,10 +1952,16 @@ int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
num_bytes = BN_bn2bin(tmp_scalar, tmp);
|
||||
} else
|
||||
num_bytes = BN_bn2bin(p_scalar, tmp);
|
||||
flip_endian(secrets[i], tmp, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(tmp_scalar,
|
||||
secrets[i], sizeof(secrets[i]));
|
||||
} else {
|
||||
num_bytes = BN_bn2lebinpad(p_scalar,
|
||||
secrets[i], sizeof(secrets[i]));
|
||||
}
|
||||
if (num_bytes < 0) {
|
||||
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
/* precompute multiples */
|
||||
if ((!BN_to_felem(x_out, p->X)) ||
|
||||
(!BN_to_felem(y_out, p->Y)) ||
|
||||
@@ -2014,21 +2004,22 @@ int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
|
||||
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
num_bytes = BN_bn2bin(tmp_scalar, tmp);
|
||||
} else
|
||||
num_bytes = BN_bn2bin(scalar, tmp);
|
||||
flip_endian(g_secret, tmp, num_bytes);
|
||||
num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
|
||||
} else {
|
||||
num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
|
||||
}
|
||||
/* do the multiplication with generator precomputation */
|
||||
batch_mul(x_out, y_out, z_out,
|
||||
(const felem_bytearray(*))secrets, num_points,
|
||||
g_secret,
|
||||
mixed, (const felem(*)[17][3])pre_comp,
|
||||
(const felem(*)[3])g_pre_comp);
|
||||
} else
|
||||
} else {
|
||||
/* do the multiplication without generator precomputation */
|
||||
batch_mul(x_out, y_out, z_out,
|
||||
(const felem_bytearray(*))secrets, num_points,
|
||||
NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
|
||||
}
|
||||
/* reduce the output to its unique minimal representation */
|
||||
felem_contract(x_in, x_out);
|
||||
felem_contract(y_in, y_out);
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
@@ -158,13 +158,13 @@ void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
|
||||
* of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1
|
||||
* by using bit-wise subtraction as follows:
|
||||
*
|
||||
* b_k b_(k-1) ... b_2 b_1 b_0
|
||||
* - b_k ... b_3 b_2 b_1 b_0
|
||||
* -------------------------------------
|
||||
* s_k b_(k-1) ... s_3 s_2 s_1 s_0
|
||||
* b_k b_(k-1) ... b_2 b_1 b_0
|
||||
* - b_k ... b_3 b_2 b_1 b_0
|
||||
* -----------------------------------------
|
||||
* s_(k+1) s_k ... s_3 s_2 s_1 s_0
|
||||
*
|
||||
* A left-shift followed by subtraction of the original value yields a new
|
||||
* representation of the same value, using signed bits s_i = b_(i+1) - b_i.
|
||||
* representation of the same value, using signed bits s_i = b_(i-1) - b_i.
|
||||
* This representation from Booth's paper has since appeared in the
|
||||
* literature under a variety of different names including "reversed binary
|
||||
* form", "alternating greedy expansion", "mutual opposite form", and
|
||||
@@ -188,7 +188,7 @@ void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
|
||||
* (1961), pp. 67-91), in a radix-2^5 setting. That is, we always combine five
|
||||
* signed bits into a signed digit:
|
||||
*
|
||||
* s_(4j + 4) s_(4j + 3) s_(4j + 2) s_(4j + 1) s_(4j)
|
||||
* s_(5j + 4) s_(5j + 3) s_(5j + 2) s_(5j + 1) s_(5j)
|
||||
*
|
||||
* The sign-alternating property implies that the resulting digit values are
|
||||
* integers from -16 to 16.
|
||||
@@ -196,14 +196,14 @@ void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
|
||||
* Of course, we don't actually need to compute the signed digits s_i as an
|
||||
* intermediate step (that's just a nice way to see how this scheme relates
|
||||
* to the wNAF): a direct computation obtains the recoded digit from the
|
||||
* six bits b_(4j + 4) ... b_(4j - 1).
|
||||
* six bits b_(5j + 4) ... b_(5j - 1).
|
||||
*
|
||||
* This function takes those five bits as an integer (0 .. 63), writing the
|
||||
* This function takes those six bits as an integer (0 .. 63), writing the
|
||||
* recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
|
||||
* value, in the range 0 .. 8). Note that this integer essentially provides the
|
||||
* input bits "shifted to the left" by one position: for example, the input to
|
||||
* compute the least significant recoded digit, given that there's no bit b_-1,
|
||||
* has to be b_4 b_3 b_2 b_1 b_0 0.
|
||||
* value, in the range 0 .. 16). Note that this integer essentially provides
|
||||
* the input bits "shifted to the left" by one position: for example, the input
|
||||
* to compute the least significant recoded digit, given that there's no bit
|
||||
* b_-1, has to be b_4 b_3 b_2 b_1 b_0 0.
|
||||
*
|
||||
*/
|
||||
void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign,
|
||||
|
||||
@@ -532,7 +532,7 @@ static int ecd_item_sign25519(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
|
||||
X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_ED25519), V_ASN1_UNDEF, NULL);
|
||||
if (alg2)
|
||||
X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_ED25519), V_ASN1_UNDEF, NULL);
|
||||
/* Algorithm idetifiers set: carry on as normal */
|
||||
/* Algorithm identifiers set: carry on as normal */
|
||||
return 3;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user