Import BSDDB 4.7.25 (as of svn r89086)
This commit is contained in:
234
hmac/hmac.c
Normal file
234
hmac/hmac.c
Normal file
@@ -0,0 +1,234 @@
|
||||
/*-
|
||||
* See the file LICENSE for redistribution information.
|
||||
*
|
||||
* Copyright (c) 2001,2008 Oracle. All rights reserved.
|
||||
*
|
||||
* Some parts of this code originally written by Adam Stubblefield,
|
||||
* -- astubble@rice.edu.
|
||||
*
|
||||
* $Id: hmac.c 63573 2008-05-23 21:43:21Z trent.nelson $
|
||||
*/
|
||||
|
||||
#include "db_config.h"
|
||||
|
||||
#include "db_int.h"
|
||||
#include "dbinc/crypto.h"
|
||||
#include "dbinc/db_page.h" /* for hash.h only */
|
||||
#include "dbinc/hash.h"
|
||||
#include "dbinc/hmac.h"
|
||||
#include "dbinc/log.h"
|
||||
|
||||
#define HMAC_OUTPUT_SIZE 20
|
||||
#define HMAC_BLOCK_SIZE 64
|
||||
|
||||
static void __db_hmac __P((u_int8_t *, u_int8_t *, size_t, u_int8_t *));
|
||||
|
||||
/*
|
||||
* !!!
|
||||
* All of these functions use a ctx structure on the stack. The __db_SHA1Init
|
||||
* call does not initialize the 64-byte buffer portion of it. The
|
||||
* underlying SHA1 functions will properly pad the buffer if the data length
|
||||
* is less than 64-bytes, so there isn't a chance of reading uninitialized
|
||||
* memory. Although it would be cleaner to do a memset(ctx.buffer, 0, 64)
|
||||
* we do not want to incur that penalty if we don't have to for performance.
|
||||
*/
|
||||
|
||||
/*
|
||||
* __db_hmac --
|
||||
* Do a hashed MAC.
|
||||
*/
|
||||
static void
|
||||
__db_hmac(k, data, data_len, mac)
|
||||
u_int8_t *k, *data, *mac;
|
||||
size_t data_len;
|
||||
{
|
||||
SHA1_CTX ctx;
|
||||
u_int8_t key[HMAC_BLOCK_SIZE];
|
||||
u_int8_t ipad[HMAC_BLOCK_SIZE];
|
||||
u_int8_t opad[HMAC_BLOCK_SIZE];
|
||||
u_int8_t tmp[HMAC_OUTPUT_SIZE];
|
||||
int i;
|
||||
|
||||
memset(key, 0x00, HMAC_BLOCK_SIZE);
|
||||
memset(ipad, 0x36, HMAC_BLOCK_SIZE);
|
||||
memset(opad, 0x5C, HMAC_BLOCK_SIZE);
|
||||
|
||||
memcpy(key, k, HMAC_OUTPUT_SIZE);
|
||||
|
||||
for (i = 0; i < HMAC_BLOCK_SIZE; i++) {
|
||||
ipad[i] ^= key[i];
|
||||
opad[i] ^= key[i];
|
||||
}
|
||||
|
||||
__db_SHA1Init(&ctx);
|
||||
__db_SHA1Update(&ctx, ipad, HMAC_BLOCK_SIZE);
|
||||
__db_SHA1Update(&ctx, data, data_len);
|
||||
__db_SHA1Final(tmp, &ctx);
|
||||
__db_SHA1Init(&ctx);
|
||||
__db_SHA1Update(&ctx, opad, HMAC_BLOCK_SIZE);
|
||||
__db_SHA1Update(&ctx, tmp, HMAC_OUTPUT_SIZE);
|
||||
__db_SHA1Final(mac, &ctx);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* __db_chksum --
|
||||
* Create a MAC/SHA1 checksum.
|
||||
*
|
||||
* PUBLIC: void __db_chksum __P((void *,
|
||||
* PUBLIC: u_int8_t *, size_t, u_int8_t *, u_int8_t *));
|
||||
*/
|
||||
void
|
||||
__db_chksum(hdr, data, data_len, mac_key, store)
|
||||
void *hdr;
|
||||
u_int8_t *data;
|
||||
size_t data_len;
|
||||
u_int8_t *mac_key;
|
||||
u_int8_t *store;
|
||||
{
|
||||
int sumlen;
|
||||
u_int32_t hash4;
|
||||
|
||||
/*
|
||||
* Since the checksum might be on a page of data we are checksumming
|
||||
* we might be overwriting after checksumming, we zero-out the
|
||||
* checksum value so that we can have a known value there when
|
||||
* we verify the checksum.
|
||||
* If we are passed a log header XOR in prev and len so we have
|
||||
* some redundancy on these fields. Mostly we need to be sure that
|
||||
* we detect a race when doing hot backups and reading a live log
|
||||
* file.
|
||||
*/
|
||||
if (mac_key == NULL)
|
||||
sumlen = sizeof(u_int32_t);
|
||||
else
|
||||
sumlen = DB_MAC_KEY;
|
||||
if (hdr == NULL)
|
||||
memset(store, 0, sumlen);
|
||||
else
|
||||
store = ((HDR*)hdr)->chksum;
|
||||
if (mac_key == NULL) {
|
||||
/* Just a hash, no MAC */
|
||||
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
|
||||
if (hdr != NULL)
|
||||
hash4 ^= ((HDR *)hdr)->prev ^ ((HDR *)hdr)->len;
|
||||
memcpy(store, &hash4, sumlen);
|
||||
} else {
|
||||
__db_hmac(mac_key, data, data_len, store);
|
||||
if (hdr != 0) {
|
||||
((int *)store)[0] ^= ((HDR *)hdr)->prev;
|
||||
((int *)store)[1] ^= ((HDR *)hdr)->len;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
/*
|
||||
* __db_derive_mac --
|
||||
* Create a MAC/SHA1 key.
|
||||
*
|
||||
* PUBLIC: void __db_derive_mac __P((u_int8_t *, size_t, u_int8_t *));
|
||||
*/
|
||||
void
|
||||
__db_derive_mac(passwd, plen, mac_key)
|
||||
u_int8_t *passwd;
|
||||
size_t plen;
|
||||
u_int8_t *mac_key;
|
||||
{
|
||||
SHA1_CTX ctx;
|
||||
|
||||
/* Compute the MAC key. mac_key must be 20 bytes. */
|
||||
__db_SHA1Init(&ctx);
|
||||
__db_SHA1Update(&ctx, passwd, plen);
|
||||
__db_SHA1Update(&ctx, (u_int8_t *)DB_MAC_MAGIC, strlen(DB_MAC_MAGIC));
|
||||
__db_SHA1Update(&ctx, passwd, plen);
|
||||
__db_SHA1Final(mac_key, &ctx);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* __db_check_chksum --
|
||||
* Verify a checksum.
|
||||
*
|
||||
* Return 0 on success, >0 (errno) on error, -1 on checksum mismatch.
|
||||
*
|
||||
* PUBLIC: int __db_check_chksum __P((ENV *,
|
||||
* PUBLIC: void *, DB_CIPHER *, u_int8_t *, void *, size_t, int));
|
||||
*/
|
||||
int
|
||||
__db_check_chksum(env, hdr, db_cipher, chksum, data, data_len, is_hmac)
|
||||
ENV *env;
|
||||
void *hdr;
|
||||
DB_CIPHER *db_cipher;
|
||||
u_int8_t *chksum;
|
||||
void *data;
|
||||
size_t data_len;
|
||||
int is_hmac;
|
||||
{
|
||||
int ret;
|
||||
size_t sum_len;
|
||||
u_int32_t hash4;
|
||||
u_int8_t *mac_key, old[DB_MAC_KEY], new[DB_MAC_KEY];
|
||||
|
||||
/*
|
||||
* If we are just doing checksumming and not encryption, then checksum
|
||||
* is 4 bytes. Otherwise, it is DB_MAC_KEY size. Check for illegal
|
||||
* combinations of crypto/non-crypto checksums.
|
||||
*/
|
||||
if (is_hmac == 0) {
|
||||
if (db_cipher != NULL) {
|
||||
__db_errx(env,
|
||||
"Unencrypted checksum with a supplied encryption key");
|
||||
return (EINVAL);
|
||||
}
|
||||
sum_len = sizeof(u_int32_t);
|
||||
mac_key = NULL;
|
||||
} else {
|
||||
if (db_cipher == NULL) {
|
||||
__db_errx(env,
|
||||
"Encrypted checksum: no encryption key specified");
|
||||
return (EINVAL);
|
||||
}
|
||||
sum_len = DB_MAC_KEY;
|
||||
mac_key = db_cipher->mac_key;
|
||||
}
|
||||
|
||||
/*
|
||||
* !!!
|
||||
* Since the checksum might be on the page, we need to have known data
|
||||
* there so that we can generate the same original checksum. We zero
|
||||
* it out, just like we do in __db_chksum above.
|
||||
* If there is a log header, XOR the prev and len fields.
|
||||
*/
|
||||
retry:
|
||||
if (hdr == NULL) {
|
||||
memcpy(old, chksum, sum_len);
|
||||
memset(chksum, 0, sum_len);
|
||||
chksum = old;
|
||||
}
|
||||
|
||||
if (mac_key == NULL) {
|
||||
/* Just a hash, no MAC */
|
||||
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
|
||||
if (hdr != NULL)
|
||||
LOG_HDR_SUM(0, hdr, &hash4);
|
||||
ret = memcmp((u_int32_t *)chksum, &hash4, sum_len) ? -1 : 0;
|
||||
} else {
|
||||
__db_hmac(mac_key, data, data_len, new);
|
||||
if (hdr != NULL)
|
||||
LOG_HDR_SUM(1, hdr, new);
|
||||
ret = memcmp(chksum, new, sum_len) ? -1 : 0;
|
||||
}
|
||||
/*
|
||||
* !!!
|
||||
* We might be looking at an old log even with the new
|
||||
* code. So, if we have a hdr, and the checksum doesn't
|
||||
* match, try again without a hdr.
|
||||
*/
|
||||
if (hdr != NULL && ret != 0) {
|
||||
hdr = NULL;
|
||||
goto retry;
|
||||
}
|
||||
|
||||
return (ret);
|
||||
}
|
||||
289
hmac/sha1.c
Normal file
289
hmac/sha1.c
Normal file
@@ -0,0 +1,289 @@
|
||||
/*
|
||||
* $Id: sha1.c 63573 2008-05-23 21:43:21Z trent.nelson $
|
||||
*/
|
||||
|
||||
#include "db_config.h"
|
||||
|
||||
#include "db_int.h"
|
||||
#include "dbinc/hmac.h"
|
||||
|
||||
/*
|
||||
SHA-1 in C
|
||||
By Steve Reid <sreid@sea-to-sky.net>
|
||||
100% Public Domain
|
||||
|
||||
-----------------
|
||||
Modified 7/98
|
||||
By James H. Brown <jbrown@burgoyne.com>
|
||||
Still 100% Public Domain
|
||||
|
||||
Corrected a problem which generated improper hash values on 16 bit machines
|
||||
Routine SHA1Update changed from
|
||||
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
|
||||
len)
|
||||
to
|
||||
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
|
||||
long len)
|
||||
|
||||
The 'len' parameter was declared an int which works fine on 32 bit machines.
|
||||
However, on 16 bit machines an int is too small for the shifts being done
|
||||
against
|
||||
it. This caused the hash function to generate incorrect values if len was
|
||||
greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
|
||||
|
||||
Since the file IO in main() reads 16K at a time, any file 8K or larger would
|
||||
be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
|
||||
"a"s).
|
||||
|
||||
I also changed the declaration of variables i & j in SHA1Update to
|
||||
unsigned long from unsigned int for the same reason.
|
||||
|
||||
These changes should make no difference to any 32 bit implementations since
|
||||
an
|
||||
int and a long are the same size in those environments.
|
||||
|
||||
--
|
||||
I also corrected a few compiler warnings generated by Borland C.
|
||||
1. Added #include <process.h> for exit() prototype
|
||||
2. Removed unused variable 'j' in SHA1Final
|
||||
3. Changed exit(0) to return (0) at end of main.
|
||||
|
||||
ALL changes I made can be located by searching for comments containing 'JHB'
|
||||
-----------------
|
||||
Modified 8/98
|
||||
By Steve Reid <sreid@sea-to-sky.net>
|
||||
Still 100% public domain
|
||||
|
||||
1- Removed #include <process.h> and used return () instead of exit()
|
||||
2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
|
||||
3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net
|
||||
|
||||
-----------------
|
||||
Modified 4/01
|
||||
By Saul Kravitz <Saul.Kravitz@celera.com>
|
||||
Still 100% PD
|
||||
Modified to run on Compaq Alpha hardware.
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
Test Vectors (from FIPS PUB 180-1)
|
||||
"abc"
|
||||
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
|
||||
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
|
||||
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
|
||||
A million repetitions of "a"
|
||||
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
|
||||
*/
|
||||
|
||||
#define SHA1HANDSOFF
|
||||
|
||||
/* #include <process.h> */ /* prototype for exit() - JHB */
|
||||
/* Using return () instead of exit() - SWR */
|
||||
|
||||
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
|
||||
|
||||
/* blk0() and blk() perform the initial expand. */
|
||||
/* I got the idea of expanding during the round function from SSLeay */
|
||||
#define blk0(i) is_bigendian ? block->l[i] : \
|
||||
(block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|
||||
|(rol(block->l[i],8)&0x00FF00FF))
|
||||
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
|
||||
^block->l[(i+2)&15]^block->l[i&15],1))
|
||||
|
||||
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
|
||||
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \
|
||||
w=rol(w,30);
|
||||
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \
|
||||
w=rol(w,30);
|
||||
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
|
||||
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \
|
||||
w=rol(w,30);
|
||||
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
|
||||
|
||||
#ifdef VERBOSE /* SAK */
|
||||
static void __db_SHAPrintContext __P((SHA1_CTX *, char *));
|
||||
static void
|
||||
__db_SHAPrintContext(context, msg)
|
||||
SHA1_CTX *context;
|
||||
char *msg;
|
||||
{
|
||||
printf("%s (%d,%d) %x %x %x %x %x\n",
|
||||
msg,
|
||||
context->count[0], context->count[1],
|
||||
context->state[0],
|
||||
context->state[1],
|
||||
context->state[2],
|
||||
context->state[3],
|
||||
context->state[4]);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Hash a single 512-bit block. This is the core of the algorithm. */
|
||||
|
||||
/*
|
||||
* __db_SHA1Transform --
|
||||
*
|
||||
* PUBLIC: void __db_SHA1Transform __P((u_int32_t *, unsigned char *));
|
||||
*/
|
||||
void
|
||||
__db_SHA1Transform(state, buffer)
|
||||
u_int32_t *state;
|
||||
unsigned char *buffer;
|
||||
{
|
||||
u_int32_t a, b, c, d, e;
|
||||
typedef union {
|
||||
unsigned char c[64];
|
||||
u_int32_t l[16];
|
||||
} CHAR64LONG16;
|
||||
CHAR64LONG16* block;
|
||||
int is_bigendian;
|
||||
#ifdef SHA1HANDSOFF
|
||||
unsigned char workspace[64];
|
||||
|
||||
block = (CHAR64LONG16*)workspace;
|
||||
memcpy(block, buffer, 64);
|
||||
#else
|
||||
block = (CHAR64LONG16*)buffer;
|
||||
#endif
|
||||
is_bigendian = __db_isbigendian();
|
||||
|
||||
/* Copy context->state[] to working vars */
|
||||
a = state[0];
|
||||
b = state[1];
|
||||
c = state[2];
|
||||
d = state[3];
|
||||
e = state[4];
|
||||
/* 4 rounds of 20 operations each. Loop unrolled. */
|
||||
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
|
||||
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
|
||||
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
|
||||
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
|
||||
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
||||
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
||||
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
||||
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
||||
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
||||
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
||||
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
||||
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
||||
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
||||
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
||||
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
||||
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
||||
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
||||
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
||||
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
||||
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
||||
/* Add the working vars back into context.state[] */
|
||||
state[0] += a;
|
||||
state[1] += b;
|
||||
state[2] += c;
|
||||
state[3] += d;
|
||||
state[4] += e;
|
||||
/* Wipe variables */
|
||||
a = b = c = d = e = 0;
|
||||
}
|
||||
|
||||
/* SHA1Init - Initialize new context */
|
||||
|
||||
/*
|
||||
* __db_SHA1Init --
|
||||
* Initialize new context
|
||||
*
|
||||
* PUBLIC: void __db_SHA1Init __P((SHA1_CTX *));
|
||||
*/
|
||||
void
|
||||
__db_SHA1Init(context)
|
||||
SHA1_CTX *context;
|
||||
{
|
||||
/* SHA1 initialization constants */
|
||||
context->state[0] = 0x67452301;
|
||||
context->state[1] = 0xEFCDAB89;
|
||||
context->state[2] = 0x98BADCFE;
|
||||
context->state[3] = 0x10325476;
|
||||
context->state[4] = 0xC3D2E1F0;
|
||||
context->count[0] = context->count[1] = 0;
|
||||
}
|
||||
|
||||
/* Run your data through this. */
|
||||
|
||||
/*
|
||||
* __db_SHA1Update --
|
||||
* Run your data through this.
|
||||
*
|
||||
* PUBLIC: void __db_SHA1Update __P((SHA1_CTX *, unsigned char *,
|
||||
* PUBLIC: size_t));
|
||||
*/
|
||||
void
|
||||
__db_SHA1Update(context, data, len)
|
||||
SHA1_CTX *context;
|
||||
unsigned char *data;
|
||||
size_t len;
|
||||
{
|
||||
u_int32_t i, j; /* JHB */
|
||||
|
||||
#ifdef VERBOSE
|
||||
__db_SHAPrintContext(context, "before");
|
||||
#endif
|
||||
j = (context->count[0] >> 3) & 63;
|
||||
if ((context->count[0] += (u_int32_t)len << 3) < (len << 3))
|
||||
context->count[1]++;
|
||||
context->count[1] += (u_int32_t)(len >> 29);
|
||||
if ((j + len) > 63) {
|
||||
memcpy(&context->buffer[j], data, (i = 64-j));
|
||||
__db_SHA1Transform(context->state, context->buffer);
|
||||
for ( ; i + 63 < len; i += 64) {
|
||||
__db_SHA1Transform(context->state, &data[i]);
|
||||
}
|
||||
j = 0;
|
||||
}
|
||||
else i = 0;
|
||||
memcpy(&context->buffer[j], &data[i], len - i);
|
||||
#ifdef VERBOSE
|
||||
__db_SHAPrintContext(context, "after ");
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Add padding and return the message digest. */
|
||||
|
||||
/*
|
||||
* __db_SHA1Final --
|
||||
* Add padding and return the message digest.
|
||||
*
|
||||
* PUBLIC: void __db_SHA1Final __P((unsigned char *, SHA1_CTX *));
|
||||
*/
|
||||
void
|
||||
__db_SHA1Final(digest, context)
|
||||
unsigned char *digest;
|
||||
SHA1_CTX *context;
|
||||
{
|
||||
u_int32_t i; /* JHB */
|
||||
unsigned char finalcount[8];
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
|
||||
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
|
||||
}
|
||||
__db_SHA1Update(context, (unsigned char *)"\200", 1);
|
||||
while ((context->count[0] & 504) != 448) {
|
||||
__db_SHA1Update(context, (unsigned char *)"\0", 1);
|
||||
}
|
||||
__db_SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform()
|
||||
*/
|
||||
for (i = 0; i < 20; i++) {
|
||||
digest[i] = (unsigned char)
|
||||
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
|
||||
}
|
||||
/* Wipe variables */
|
||||
i = 0; /* JHB */
|
||||
memset(context->buffer, 0, 64);
|
||||
memset(context->state, 0, 20);
|
||||
memset(context->count, 0, 8);
|
||||
memset(finalcount, 0, 8); /* SWR */
|
||||
#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */
|
||||
__db_SHA1Transform(context->state, context->buffer);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*************************************************************/
|
||||
Reference in New Issue
Block a user