Import BSDDB 4.7.25 (as of svn r89086)

This commit is contained in:
Zachary Ware
2017-09-04 13:40:25 -05:00
parent 4b29e0458f
commit 8f590873d0
4781 changed files with 2241032 additions and 6 deletions

234
hmac/hmac.c Normal file
View File

@@ -0,0 +1,234 @@
/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 2001,2008 Oracle. All rights reserved.
*
* Some parts of this code originally written by Adam Stubblefield,
* -- astubble@rice.edu.
*
* $Id: hmac.c 63573 2008-05-23 21:43:21Z trent.nelson $
*/
#include "db_config.h"
#include "db_int.h"
#include "dbinc/crypto.h"
#include "dbinc/db_page.h" /* for hash.h only */
#include "dbinc/hash.h"
#include "dbinc/hmac.h"
#include "dbinc/log.h"
#define HMAC_OUTPUT_SIZE 20
#define HMAC_BLOCK_SIZE 64
static void __db_hmac __P((u_int8_t *, u_int8_t *, size_t, u_int8_t *));
/*
* !!!
* All of these functions use a ctx structure on the stack. The __db_SHA1Init
* call does not initialize the 64-byte buffer portion of it. The
* underlying SHA1 functions will properly pad the buffer if the data length
* is less than 64-bytes, so there isn't a chance of reading uninitialized
* memory. Although it would be cleaner to do a memset(ctx.buffer, 0, 64)
* we do not want to incur that penalty if we don't have to for performance.
*/
/*
* __db_hmac --
* Do a hashed MAC.
*/
static void
__db_hmac(k, data, data_len, mac)
u_int8_t *k, *data, *mac;
size_t data_len;
{
SHA1_CTX ctx;
u_int8_t key[HMAC_BLOCK_SIZE];
u_int8_t ipad[HMAC_BLOCK_SIZE];
u_int8_t opad[HMAC_BLOCK_SIZE];
u_int8_t tmp[HMAC_OUTPUT_SIZE];
int i;
memset(key, 0x00, HMAC_BLOCK_SIZE);
memset(ipad, 0x36, HMAC_BLOCK_SIZE);
memset(opad, 0x5C, HMAC_BLOCK_SIZE);
memcpy(key, k, HMAC_OUTPUT_SIZE);
for (i = 0; i < HMAC_BLOCK_SIZE; i++) {
ipad[i] ^= key[i];
opad[i] ^= key[i];
}
__db_SHA1Init(&ctx);
__db_SHA1Update(&ctx, ipad, HMAC_BLOCK_SIZE);
__db_SHA1Update(&ctx, data, data_len);
__db_SHA1Final(tmp, &ctx);
__db_SHA1Init(&ctx);
__db_SHA1Update(&ctx, opad, HMAC_BLOCK_SIZE);
__db_SHA1Update(&ctx, tmp, HMAC_OUTPUT_SIZE);
__db_SHA1Final(mac, &ctx);
return;
}
/*
* __db_chksum --
* Create a MAC/SHA1 checksum.
*
* PUBLIC: void __db_chksum __P((void *,
* PUBLIC: u_int8_t *, size_t, u_int8_t *, u_int8_t *));
*/
void
__db_chksum(hdr, data, data_len, mac_key, store)
void *hdr;
u_int8_t *data;
size_t data_len;
u_int8_t *mac_key;
u_int8_t *store;
{
int sumlen;
u_int32_t hash4;
/*
* Since the checksum might be on a page of data we are checksumming
* we might be overwriting after checksumming, we zero-out the
* checksum value so that we can have a known value there when
* we verify the checksum.
* If we are passed a log header XOR in prev and len so we have
* some redundancy on these fields. Mostly we need to be sure that
* we detect a race when doing hot backups and reading a live log
* file.
*/
if (mac_key == NULL)
sumlen = sizeof(u_int32_t);
else
sumlen = DB_MAC_KEY;
if (hdr == NULL)
memset(store, 0, sumlen);
else
store = ((HDR*)hdr)->chksum;
if (mac_key == NULL) {
/* Just a hash, no MAC */
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
if (hdr != NULL)
hash4 ^= ((HDR *)hdr)->prev ^ ((HDR *)hdr)->len;
memcpy(store, &hash4, sumlen);
} else {
__db_hmac(mac_key, data, data_len, store);
if (hdr != 0) {
((int *)store)[0] ^= ((HDR *)hdr)->prev;
((int *)store)[1] ^= ((HDR *)hdr)->len;
}
}
return;
}
/*
* __db_derive_mac --
* Create a MAC/SHA1 key.
*
* PUBLIC: void __db_derive_mac __P((u_int8_t *, size_t, u_int8_t *));
*/
void
__db_derive_mac(passwd, plen, mac_key)
u_int8_t *passwd;
size_t plen;
u_int8_t *mac_key;
{
SHA1_CTX ctx;
/* Compute the MAC key. mac_key must be 20 bytes. */
__db_SHA1Init(&ctx);
__db_SHA1Update(&ctx, passwd, plen);
__db_SHA1Update(&ctx, (u_int8_t *)DB_MAC_MAGIC, strlen(DB_MAC_MAGIC));
__db_SHA1Update(&ctx, passwd, plen);
__db_SHA1Final(mac_key, &ctx);
return;
}
/*
* __db_check_chksum --
* Verify a checksum.
*
* Return 0 on success, >0 (errno) on error, -1 on checksum mismatch.
*
* PUBLIC: int __db_check_chksum __P((ENV *,
* PUBLIC: void *, DB_CIPHER *, u_int8_t *, void *, size_t, int));
*/
int
__db_check_chksum(env, hdr, db_cipher, chksum, data, data_len, is_hmac)
ENV *env;
void *hdr;
DB_CIPHER *db_cipher;
u_int8_t *chksum;
void *data;
size_t data_len;
int is_hmac;
{
int ret;
size_t sum_len;
u_int32_t hash4;
u_int8_t *mac_key, old[DB_MAC_KEY], new[DB_MAC_KEY];
/*
* If we are just doing checksumming and not encryption, then checksum
* is 4 bytes. Otherwise, it is DB_MAC_KEY size. Check for illegal
* combinations of crypto/non-crypto checksums.
*/
if (is_hmac == 0) {
if (db_cipher != NULL) {
__db_errx(env,
"Unencrypted checksum with a supplied encryption key");
return (EINVAL);
}
sum_len = sizeof(u_int32_t);
mac_key = NULL;
} else {
if (db_cipher == NULL) {
__db_errx(env,
"Encrypted checksum: no encryption key specified");
return (EINVAL);
}
sum_len = DB_MAC_KEY;
mac_key = db_cipher->mac_key;
}
/*
* !!!
* Since the checksum might be on the page, we need to have known data
* there so that we can generate the same original checksum. We zero
* it out, just like we do in __db_chksum above.
* If there is a log header, XOR the prev and len fields.
*/
retry:
if (hdr == NULL) {
memcpy(old, chksum, sum_len);
memset(chksum, 0, sum_len);
chksum = old;
}
if (mac_key == NULL) {
/* Just a hash, no MAC */
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
if (hdr != NULL)
LOG_HDR_SUM(0, hdr, &hash4);
ret = memcmp((u_int32_t *)chksum, &hash4, sum_len) ? -1 : 0;
} else {
__db_hmac(mac_key, data, data_len, new);
if (hdr != NULL)
LOG_HDR_SUM(1, hdr, new);
ret = memcmp(chksum, new, sum_len) ? -1 : 0;
}
/*
* !!!
* We might be looking at an old log even with the new
* code. So, if we have a hdr, and the checksum doesn't
* match, try again without a hdr.
*/
if (hdr != NULL && ret != 0) {
hdr = NULL;
goto retry;
}
return (ret);
}

289
hmac/sha1.c Normal file
View File

@@ -0,0 +1,289 @@
/*
* $Id: sha1.c 63573 2008-05-23 21:43:21Z trent.nelson $
*/
#include "db_config.h"
#include "db_int.h"
#include "dbinc/hmac.h"
/*
SHA-1 in C
By Steve Reid <sreid@sea-to-sky.net>
100% Public Domain
-----------------
Modified 7/98
By James H. Brown <jbrown@burgoyne.com>
Still 100% Public Domain
Corrected a problem which generated improper hash values on 16 bit machines
Routine SHA1Update changed from
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
len)
to
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
long len)
The 'len' parameter was declared an int which works fine on 32 bit machines.
However, on 16 bit machines an int is too small for the shifts being done
against
it. This caused the hash function to generate incorrect values if len was
greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
Since the file IO in main() reads 16K at a time, any file 8K or larger would
be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
"a"s).
I also changed the declaration of variables i & j in SHA1Update to
unsigned long from unsigned int for the same reason.
These changes should make no difference to any 32 bit implementations since
an
int and a long are the same size in those environments.
--
I also corrected a few compiler warnings generated by Borland C.
1. Added #include <process.h> for exit() prototype
2. Removed unused variable 'j' in SHA1Final
3. Changed exit(0) to return (0) at end of main.
ALL changes I made can be located by searching for comments containing 'JHB'
-----------------
Modified 8/98
By Steve Reid <sreid@sea-to-sky.net>
Still 100% public domain
1- Removed #include <process.h> and used return () instead of exit()
2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net
-----------------
Modified 4/01
By Saul Kravitz <Saul.Kravitz@celera.com>
Still 100% PD
Modified to run on Compaq Alpha hardware.
*/
/*
Test Vectors (from FIPS PUB 180-1)
"abc"
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
#define SHA1HANDSOFF
/* #include <process.h> */ /* prototype for exit() - JHB */
/* Using return () instead of exit() - SWR */
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#define blk0(i) is_bigendian ? block->l[i] : \
(block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \
w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \
w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \
w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
#ifdef VERBOSE /* SAK */
static void __db_SHAPrintContext __P((SHA1_CTX *, char *));
static void
__db_SHAPrintContext(context, msg)
SHA1_CTX *context;
char *msg;
{
printf("%s (%d,%d) %x %x %x %x %x\n",
msg,
context->count[0], context->count[1],
context->state[0],
context->state[1],
context->state[2],
context->state[3],
context->state[4]);
}
#endif
/* Hash a single 512-bit block. This is the core of the algorithm. */
/*
* __db_SHA1Transform --
*
* PUBLIC: void __db_SHA1Transform __P((u_int32_t *, unsigned char *));
*/
void
__db_SHA1Transform(state, buffer)
u_int32_t *state;
unsigned char *buffer;
{
u_int32_t a, b, c, d, e;
typedef union {
unsigned char c[64];
u_int32_t l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
int is_bigendian;
#ifdef SHA1HANDSOFF
unsigned char workspace[64];
block = (CHAR64LONG16*)workspace;
memcpy(block, buffer, 64);
#else
block = (CHAR64LONG16*)buffer;
#endif
is_bigendian = __db_isbigendian();
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* SHA1Init - Initialize new context */
/*
* __db_SHA1Init --
* Initialize new context
*
* PUBLIC: void __db_SHA1Init __P((SHA1_CTX *));
*/
void
__db_SHA1Init(context)
SHA1_CTX *context;
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
/*
* __db_SHA1Update --
* Run your data through this.
*
* PUBLIC: void __db_SHA1Update __P((SHA1_CTX *, unsigned char *,
* PUBLIC: size_t));
*/
void
__db_SHA1Update(context, data, len)
SHA1_CTX *context;
unsigned char *data;
size_t len;
{
u_int32_t i, j; /* JHB */
#ifdef VERBOSE
__db_SHAPrintContext(context, "before");
#endif
j = (context->count[0] >> 3) & 63;
if ((context->count[0] += (u_int32_t)len << 3) < (len << 3))
context->count[1]++;
context->count[1] += (u_int32_t)(len >> 29);
if ((j + len) > 63) {
memcpy(&context->buffer[j], data, (i = 64-j));
__db_SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64) {
__db_SHA1Transform(context->state, &data[i]);
}
j = 0;
}
else i = 0;
memcpy(&context->buffer[j], &data[i], len - i);
#ifdef VERBOSE
__db_SHAPrintContext(context, "after ");
#endif
}
/* Add padding and return the message digest. */
/*
* __db_SHA1Final --
* Add padding and return the message digest.
*
* PUBLIC: void __db_SHA1Final __P((unsigned char *, SHA1_CTX *));
*/
void
__db_SHA1Final(digest, context)
unsigned char *digest;
SHA1_CTX *context;
{
u_int32_t i; /* JHB */
unsigned char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
__db_SHA1Update(context, (unsigned char *)"\200", 1);
while ((context->count[0] & 504) != 448) {
__db_SHA1Update(context, (unsigned char *)"\0", 1);
}
__db_SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform()
*/
for (i = 0; i < 20; i++) {
digest[i] = (unsigned char)
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
/* Wipe variables */
i = 0; /* JHB */
memset(context->buffer, 0, 64);
memset(context->state, 0, 20);
memset(context->count, 0, 8);
memset(finalcount, 0, 8); /* SWR */
#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */
__db_SHA1Transform(context->state, context->buffer);
#endif
}
/*************************************************************/