Import OpenSSL 1.1.1i

This commit is contained in:
Steve Dower
2021-01-05 19:44:35 +00:00
parent 7f34c3085f
commit ae8aba4cbc
344 changed files with 4257 additions and 4161 deletions

View File

@@ -673,357 +673,6 @@ void AES_decrypt(const unsigned char *in, unsigned char *out,
InvCipher(in, out, rk, key->rounds);
}
# ifndef OPENSSL_SMALL_FOOTPRINT
void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char *ivec);
static void RawToBits(const u8 raw[64], u64 bits[8])
{
int i, j;
u64 in, out;
memset(bits, 0, 64);
for (i = 0; i < 8; i++) {
in = 0;
for (j = 0; j < 8; j++)
in |= ((u64)raw[i * 8 + j]) << (8 * j);
out = in & 0xF0F0F0F00F0F0F0FuLL;
out |= (in & 0x0F0F0F0F00000000uLL) >> 28;
out |= (in & 0x00000000F0F0F0F0uLL) << 28;
in = out & 0xCCCC3333CCCC3333uLL;
in |= (out & 0x3333000033330000uLL) >> 14;
in |= (out & 0x0000CCCC0000CCCCuLL) << 14;
out = in & 0xAA55AA55AA55AA55uLL;
out |= (in & 0x5500550055005500uLL) >> 7;
out |= (in & 0x00AA00AA00AA00AAuLL) << 7;
for (j = 0; j < 8; j++) {
bits[j] |= (out & 0xFFuLL) << (8 * i);
out = out >> 8;
}
}
}
static void BitsToRaw(const u64 bits[8], u8 raw[64])
{
int i, j;
u64 in, out;
for (i = 0; i < 8; i++) {
in = 0;
for (j = 0; j < 8; j++)
in |= ((bits[j] >> (8 * i)) & 0xFFuLL) << (8 * j);
out = in & 0xF0F0F0F00F0F0F0FuLL;
out |= (in & 0x0F0F0F0F00000000uLL) >> 28;
out |= (in & 0x00000000F0F0F0F0uLL) << 28;
in = out & 0xCCCC3333CCCC3333uLL;
in |= (out & 0x3333000033330000uLL) >> 14;
in |= (out & 0x0000CCCC0000CCCCuLL) << 14;
out = in & 0xAA55AA55AA55AA55uLL;
out |= (in & 0x5500550055005500uLL) >> 7;
out |= (in & 0x00AA00AA00AA00AAuLL) << 7;
for (j = 0; j < 8; j++) {
raw[i * 8 + j] = (u8)out;
out = out >> 8;
}
}
}
static void BitsXtime(u64 state[8])
{
u64 b;
b = state[7];
state[7] = state[6];
state[6] = state[5];
state[5] = state[4];
state[4] = state[3] ^ b;
state[3] = state[2] ^ b;
state[2] = state[1];
state[1] = state[0] ^ b;
state[0] = b;
}
/*
* This S-box implementation follows a circuit described in
* Boyar and Peralta: "A new combinational logic minimization
* technique with applications to cryptology."
* https://eprint.iacr.org/2009/191.pdf
*
* The math is similar to above, in that it uses
* a tower field of GF(2^2^2^2) but with a different
* basis representation, that is better suited to
* logic designs.
*/
static void BitsSub(u64 state[8])
{
u64 x0, x1, x2, x3, x4, x5, x6, x7;
u64 y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11;
u64 y12, y13, y14, y15, y16, y17, y18, y19, y20, y21;
u64 t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
u64 t12, t13, t14, t15, t16, t17, t18, t19, t20, t21;
u64 t22, t23, t24, t25, t26, t27, t28, t29, t30, t31;
u64 t32, t33, t34, t35, t36, t37, t38, t39, t40, t41;
u64 t42, t43, t44, t45, t46, t47, t48, t49, t50, t51;
u64 t52, t53, t54, t55, t56, t57, t58, t59, t60, t61;
u64 t62, t63, t64, t65, t66, t67;
u64 z0, z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11;
u64 z12, z13, z14, z15, z16, z17;
u64 s0, s1, s2, s3, s4, s5, s6, s7;
x7 = state[0];
x6 = state[1];
x5 = state[2];
x4 = state[3];
x3 = state[4];
x2 = state[5];
x1 = state[6];
x0 = state[7];
y14 = x3 ^ x5;
y13 = x0 ^ x6;
y9 = x0 ^ x3;
y8 = x0 ^ x5;
t0 = x1 ^ x2;
y1 = t0 ^ x7;
y4 = y1 ^ x3;
y12 = y13 ^ y14;
y2 = y1 ^ x0;
y5 = y1 ^ x6;
y3 = y5 ^ y8;
t1 = x4 ^ y12;
y15 = t1 ^ x5;
y20 = t1 ^ x1;
y6 = y15 ^ x7;
y10 = y15 ^ t0;
y11 = y20 ^ y9;
y7 = x7 ^ y11;
y17 = y10 ^ y11;
y19 = y10 ^ y8;
y16 = t0 ^ y11;
y21 = y13 ^ y16;
y18 = x0 ^ y16;
t2 = y12 & y15;
t3 = y3 & y6;
t4 = t3 ^ t2;
t5 = y4 & x7;
t6 = t5 ^ t2;
t7 = y13 & y16;
t8 = y5 & y1;
t9 = t8 ^ t7;
t10 = y2 & y7;
t11 = t10 ^ t7;
t12 = y9 & y11;
t13 = y14 & y17;
t14 = t13 ^ t12;
t15 = y8 & y10;
t16 = t15 ^ t12;
t17 = t4 ^ t14;
t18 = t6 ^ t16;
t19 = t9 ^ t14;
t20 = t11 ^ t16;
t21 = t17 ^ y20;
t22 = t18 ^ y19;
t23 = t19 ^ y21;
t24 = t20 ^ y18;
t25 = t21 ^ t22;
t26 = t21 & t23;
t27 = t24 ^ t26;
t28 = t25 & t27;
t29 = t28 ^ t22;
t30 = t23 ^ t24;
t31 = t22 ^ t26;
t32 = t31 & t30;
t33 = t32 ^ t24;
t34 = t23 ^ t33;
t35 = t27 ^ t33;
t36 = t24 & t35;
t37 = t36 ^ t34;
t38 = t27 ^ t36;
t39 = t29 & t38;
t40 = t25 ^ t39;
t41 = t40 ^ t37;
t42 = t29 ^ t33;
t43 = t29 ^ t40;
t44 = t33 ^ t37;
t45 = t42 ^ t41;
z0 = t44 & y15;
z1 = t37 & y6;
z2 = t33 & x7;
z3 = t43 & y16;
z4 = t40 & y1;
z5 = t29 & y7;
z6 = t42 & y11;
z7 = t45 & y17;
z8 = t41 & y10;
z9 = t44 & y12;
z10 = t37 & y3;
z11 = t33 & y4;
z12 = t43 & y13;
z13 = t40 & y5;
z14 = t29 & y2;
z15 = t42 & y9;
z16 = t45 & y14;
z17 = t41 & y8;
t46 = z15 ^ z16;
t47 = z10 ^ z11;
t48 = z5 ^ z13;
t49 = z9 ^ z10;
t50 = z2 ^ z12;
t51 = z2 ^ z5;
t52 = z7 ^ z8;
t53 = z0 ^ z3;
t54 = z6 ^ z7;
t55 = z16 ^ z17;
t56 = z12 ^ t48;
t57 = t50 ^ t53;
t58 = z4 ^ t46;
t59 = z3 ^ t54;
t60 = t46 ^ t57;
t61 = z14 ^ t57;
t62 = t52 ^ t58;
t63 = t49 ^ t58;
t64 = z4 ^ t59;
t65 = t61 ^ t62;
t66 = z1 ^ t63;
s0 = t59 ^ t63;
s6 = ~(t56 ^ t62);
s7 = ~(t48 ^ t60);
t67 = t64 ^ t65;
s3 = t53 ^ t66;
s4 = t51 ^ t66;
s5 = t47 ^ t65;
s1 = ~(t64 ^ s3);
s2 = ~(t55 ^ t67);
state[0] = s7;
state[1] = s6;
state[2] = s5;
state[3] = s4;
state[4] = s3;
state[5] = s2;
state[6] = s1;
state[7] = s0;
}
static void BitsShiftRows(u64 state[8])
{
u64 s, s0;
int i;
for (i = 0; i < 8; i++) {
s = state[i];
s0 = s & 0x1111111111111111uLL;
s0 |= ((s & 0x2220222022202220uLL) >> 4) | ((s & 0x0002000200020002uLL) << 12);
s0 |= ((s & 0x4400440044004400uLL) >> 8) | ((s & 0x0044004400440044uLL) << 8);
s0 |= ((s & 0x8000800080008000uLL) >> 12) | ((s & 0x0888088808880888uLL) << 4);
state[i] = s0;
}
}
static void BitsMixColumns(u64 state[8])
{
u64 s1, s;
u64 s0[8];
int i;
for (i = 0; i < 8; i++) {
s1 = state[i];
s = s1;
s ^= ((s & 0xCCCCCCCCCCCCCCCCuLL) >> 2) | ((s & 0x3333333333333333uLL) << 2);
s ^= ((s & 0xAAAAAAAAAAAAAAAAuLL) >> 1) | ((s & 0x5555555555555555uLL) << 1);
s ^= s1;
s0[i] = s;
}
BitsXtime(state);
for (i = 0; i < 8; i++) {
s1 = state[i];
s = s0[i];
s ^= s1;
s ^= ((s1 & 0xEEEEEEEEEEEEEEEEuLL) >> 1) | ((s1 & 0x1111111111111111uLL) << 3);
state[i] = s;
}
}
static void BitsAddRoundKey(u64 state[8], const u64 key[8])
{
int i;
for (i = 0; i < 8; i++)
state[i] ^= key[i];
}
void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char *ivec)
{
struct {
u8 cipher[64];
u64 state[8];
u64 rd_key[AES_MAXNR + 1][8];
} *bs;
u32 ctr32;
int i;
ctr32 = GETU32(ivec + 12);
if (blocks >= 4
&& (bs = OPENSSL_malloc(sizeof(*bs)))) {
for (i = 0; i < key->rounds + 1; i++) {
memcpy(bs->cipher + 0, &key->rd_key[4 * i], 16);
memcpy(bs->cipher + 16, bs->cipher, 16);
memcpy(bs->cipher + 32, bs->cipher, 32);
RawToBits(bs->cipher, bs->rd_key[i]);
}
while (blocks) {
memcpy(bs->cipher, ivec, 12);
PUTU32(bs->cipher + 12, ctr32);
ctr32++;
memcpy(bs->cipher + 16, ivec, 12);
PUTU32(bs->cipher + 28, ctr32);
ctr32++;
memcpy(bs->cipher + 32, ivec, 12);
PUTU32(bs->cipher + 44, ctr32);
ctr32++;
memcpy(bs->cipher + 48, ivec, 12);
PUTU32(bs->cipher + 60, ctr32);
ctr32++;
RawToBits(bs->cipher, bs->state);
BitsAddRoundKey(bs->state, bs->rd_key[0]);
for (i = 1; i < key->rounds; i++) {
BitsSub(bs->state);
BitsShiftRows(bs->state);
BitsMixColumns(bs->state);
BitsAddRoundKey(bs->state, bs->rd_key[i]);
}
BitsSub(bs->state);
BitsShiftRows(bs->state);
BitsAddRoundKey(bs->state, bs->rd_key[key->rounds]);
BitsToRaw(bs->state, bs->cipher);
for (i = 0; i < 64 && blocks; i++) {
out[i] = in[i] ^ bs->cipher[i];
if ((i & 15) == 15)
blocks--;
}
in += i;
out += i;
}
OPENSSL_clear_free(bs, sizeof(*bs));
} else {
unsigned char cipher[16];
while (blocks) {
memcpy(cipher, ivec, 12);
PUTU32(cipher + 12, ctr32);
AES_encrypt(cipher, cipher, key);
for (i = 0; i < 16; i++)
out[i] = in[i] ^ cipher[i];
in += 16;
out += 16;
ctr32++;
blocks--;
}
}
}
# endif
#elif !defined(AES_ASM)
/*-
Te0[x] = S [x].[02, 01, 01, 03];