arm: Reindent arm/ffi.c

This commit is contained in:
Richard Henderson
2014-10-15 17:28:53 -04:00
parent 9761b7bb70
commit c129bea82a

View File

@@ -37,10 +37,11 @@
static int vfp_type_p (ffi_type *);
static void layout_vfp_args (ffi_cif *);
int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space);
int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space);
int ffi_prep_args_SYSV (char *stack, extended_cif *ecif, float *vfp_space);
int ffi_prep_args_VFP (char *stack, extended_cif *ecif, float *vfp_space);
static char* ffi_align(ffi_type **p_arg, char *argp)
static char *
ffi_align (ffi_type **p_arg, char *argp)
{
/* Align if necessary */
register size_t alignment = (*p_arg)->alignment;
@@ -56,68 +57,70 @@ static char* ffi_align(ffi_type **p_arg, char *argp)
#endif
if ((alignment - 1) & (unsigned) argp)
{
argp = (char *) ALIGN(argp, alignment);
argp = (char *) ALIGN (argp, alignment);
}
if ((*p_arg)->type == FFI_TYPE_STRUCT)
{
argp = (char *) ALIGN(argp, 4);
argp = (char *) ALIGN (argp, 4);
}
return argp;
}
static size_t ffi_put_arg(ffi_type **arg_type, void **arg, char *stack)
static size_t
ffi_put_arg (ffi_type **arg_type, void **arg, char *stack)
{
register char* argp = stack;
register char *argp = stack;
register ffi_type **p_arg = arg_type;
register void **p_argv = arg;
register size_t z = (*p_arg)->size;
if (z < sizeof(int))
if (z < sizeof (int))
{
z = sizeof(int);
z = sizeof (int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
*(signed int *) argp = (signed int) *(SINT8 *) (*p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
*(unsigned int *) argp = (unsigned int) *(UINT8 *) (*p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
*(signed int *) argp = (signed int) *(SINT16 *) (*p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
*(unsigned int *) argp = (unsigned int) *(UINT16 *) (*p_argv);
break;
case FFI_TYPE_STRUCT:
memcpy(argp, *p_argv, (*p_arg)->size);
memcpy (argp, *p_argv, (*p_arg)->size);
break;
default:
FFI_ASSERT(0);
FFI_ASSERT (0);
}
}
else if (z == sizeof(int))
else if (z == sizeof (int))
{
if ((*p_arg)->type == FFI_TYPE_FLOAT)
*(float *) argp = *(float *)(* p_argv);
*(float *) argp = *(float *) (*p_argv);
else
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
*(unsigned int *) argp = (unsigned int) *(UINT32 *) (*p_argv);
}
else if (z == sizeof(double) && (*p_arg)->type == FFI_TYPE_DOUBLE)
else if (z == sizeof (double) && (*p_arg)->type == FFI_TYPE_DOUBLE)
{
*(double *) argp = *(double *)(* p_argv);
*(double *) argp = *(double *) (*p_argv);
}
else
{
memcpy(argp, *p_argv, z);
memcpy (argp, *p_argv, z);
}
return z;
}
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments
@@ -125,7 +128,8 @@ static size_t ffi_put_arg(ffi_type **arg_type, void **arg, char *stack)
value is cif->vfp_used (word bitset of VFP regs used for passing
arguments). These are only used for the VFP hard-float ABI.
*/
int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space)
int
ffi_prep_args_SYSV (char *stack, extended_cif *ecif, float *vfp_space)
{
register unsigned int i;
register void **p_argv;
@@ -133,8 +137,8 @@ int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space)
register ffi_type **p_arg;
argp = stack;
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
if (ecif->cif->flags == FFI_TYPE_STRUCT)
{
*(void **) argp = ecif->rvalue;
argp += 4;
}
@@ -142,17 +146,17 @@ int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space)
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++, p_argv++)
(i != 0); i--, p_arg++, p_argv++)
{
argp = ffi_align(p_arg, argp);
argp += ffi_put_arg(p_arg, p_argv, argp);
argp = ffi_align (p_arg, argp);
argp += ffi_put_arg (p_arg, p_argv, argp);
}
return 0;
}
int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space)
int
ffi_prep_args_VFP (char *stack, extended_cif * ecif, float *vfp_space)
{
register unsigned int i, vi = 0;
register void **p_argv;
@@ -162,18 +166,18 @@ int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space)
char done_with_regs = 0;
char is_vfp_type;
// make sure we are using FFI_VFP
FFI_ASSERT(ecif->cif->abi == FFI_VFP);
/* Make sure we are using FFI_VFP. */
FFI_ASSERT (ecif->cif->abi == FFI_VFP);
/* the first 4 words on the stack are used for values passed in core
* registers. */
/* The first 4 words on the stack are used for values
passed in core registers. */
regp = stack;
eo_regp = argp = regp + 16;
/* if the function returns an FFI_TYPE_STRUCT in memory, that address is
* passed in r0 to the function */
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
/* If the function returns an FFI_TYPE_STRUCT in memory,
that address is passed in r0 to the function. */
if (ecif->cif->flags == FFI_TYPE_STRUCT)
{
*(void **) regp = ecif->rvalue;
regp += 4;
}
@@ -181,57 +185,57 @@ int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space)
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++, p_argv++)
(i != 0); i--, p_arg++, p_argv++)
{
is_vfp_type = vfp_type_p (*p_arg);
/* Allocated in VFP registers. */
if(vi < ecif->cif->vfp_nargs && is_vfp_type)
if (vi < ecif->cif->vfp_nargs && is_vfp_type)
{
char *vfp_slot = (char *)(vfp_space + ecif->cif->vfp_args[vi++]);
ffi_put_arg(p_arg, p_argv, vfp_slot);
char *vfp_slot = (char *) (vfp_space + ecif->cif->vfp_args[vi++]);
ffi_put_arg (p_arg, p_argv, vfp_slot);
continue;
}
/* Try allocating in core registers. */
else if (!done_with_regs && !is_vfp_type)
{
char *tregp = ffi_align(p_arg, regp);
char *tregp = ffi_align (p_arg, regp);
size_t size = (*p_arg)->size;
size = (size < 4)? 4 : size; // pad
/* Check if there is space left in the aligned register area to place
* the argument */
if(tregp + size <= eo_regp)
size = (size < 4) ? 4 : size; // pad
/* Check if there is space left in the aligned register
area to place the argument. */
if (tregp + size <= eo_regp)
{
regp = tregp + ffi_put_arg(p_arg, p_argv, tregp);
regp = tregp + ffi_put_arg (p_arg, p_argv, tregp);
done_with_regs = (regp == argp);
// ensure we did not write into the stack area
FFI_ASSERT(regp <= argp);
FFI_ASSERT (regp <= argp);
continue;
}
/* In case there are no arguments in the stack area yet,
the argument is passed in the remaining core registers and on the
stack. */
the argument is passed in the remaining core registers
and on the stack. */
else if (!stack_used)
{
stack_used = 1;
done_with_regs = 1;
argp = tregp + ffi_put_arg(p_arg, p_argv, tregp);
FFI_ASSERT(eo_regp < argp);
argp = tregp + ffi_put_arg (p_arg, p_argv, tregp);
FFI_ASSERT (eo_regp < argp);
continue;
}
}
/* Base case, arguments are passed on the stack */
stack_used = 1;
argp = ffi_align(p_arg, argp);
argp += ffi_put_arg(p_arg, p_argv, argp);
argp = ffi_align (p_arg, argp);
argp += ffi_put_arg (p_arg, p_argv, argp);
}
/* Indicate the VFP registers used. */
return ecif->cif->vfp_used;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
ffi_status
ffi_prep_cif_machdep (ffi_cif * cif)
{
int type_code;
/* Round the stack up to a multiple of 8 bytes. This isn't needed
@@ -254,21 +258,24 @@ ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
break;
case FFI_TYPE_STRUCT:
if (cif->abi == FFI_VFP
&& (type_code = vfp_type_p (cif->rtype)) != 0)
if (cif->abi == FFI_VFP && (type_code = vfp_type_p (cif->rtype)) != 0)
{
/* A Composite Type passed in VFP registers, either
FFI_TYPE_STRUCT_VFP_FLOAT or FFI_TYPE_STRUCT_VFP_DOUBLE. */
cif->flags = (unsigned) type_code;
}
else if (cif->rtype->size <= 4)
{
/* A Composite Type not larger than 4 bytes is returned in r0. */
cif->flags = (unsigned)FFI_TYPE_INT;
cif->flags = (unsigned) FFI_TYPE_INT;
}
else
{
/* A Composite Type larger than 4 bytes, or whose size cannot
be determined statically ... is stored in memory at an
address passed [in r0]. */
cif->flags = (unsigned)FFI_TYPE_STRUCT;
cif->flags = (unsigned) FFI_TYPE_STRUCT;
}
break;
default:
@@ -276,9 +283,10 @@ ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
break;
}
/* Map out the register placements of VFP register args.
The VFP hard-float calling conventions are slightly more sophisticated than
the base calling conventions, so we do it here instead of in ffi_prep_args(). */
/* Map out the register placements of VFP register args. The VFP
hard-float calling conventions are slightly more sophisticated
than the base calling conventions, so we do it here instead of
in ffi_prep_args(). */
if (cif->abi == FFI_VFP)
layout_vfp_args (cif);
@@ -286,22 +294,25 @@ ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
}
/* Perform machine dependent cif processing for variadic calls */
ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif,
unsigned int nfixedargs,
unsigned int ntotalargs)
ffi_status
ffi_prep_cif_machdep_var (ffi_cif * cif,
unsigned int nfixedargs, unsigned int ntotalargs)
{
/* VFP variadic calls actually use the SYSV ABI */
if (cif->abi == FFI_VFP)
cif->abi = FFI_SYSV;
return ffi_prep_cif_machdep(cif);
return ffi_prep_cif_machdep (cif);
}
/* Prototypes for assembly functions, in sysv.S */
extern void ffi_call_SYSV (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
extern void ffi_call_VFP (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
/* Prototypes for assembly functions, in sysv.S. */
extern void ffi_call_SYSV (void (*fn) (void), extended_cif *, unsigned,
unsigned, unsigned *);
extern void ffi_call_VFP (void (*fn) (void), extended_cif *, unsigned,
unsigned, unsigned *);
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
void
ffi_call (ffi_cif * cif, void (*fn) (void), void *rvalue, void **avalue)
{
extended_cif ecif;
@@ -315,20 +326,19 @@ void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
/* If the return value is a struct and we don't have a return
value address then we need to make one. */
if ((rvalue == NULL) &&
(cif->flags == FFI_TYPE_STRUCT))
if ((rvalue == NULL) && (cif->flags == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
ecif.rvalue = alloca (cif->rtype->size);
}
else if (small_struct)
ecif.rvalue = &temp;
else if (vfp_struct)
{
/* Largest case is double x 4. */
ecif.rvalue = alloca(32);
ecif.rvalue = alloca (32);
}
else
ecif.rvalue = rvalue;
@@ -346,30 +356,30 @@ void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
#endif
default:
FFI_ASSERT(0);
FFI_ASSERT (0);
break;
}
if (small_struct)
{
FFI_ASSERT(rvalue != NULL);
FFI_ASSERT (rvalue != NULL);
memcpy (rvalue, &temp, cif->rtype->size);
}
else if (vfp_struct)
{
FFI_ASSERT(rvalue != NULL);
FFI_ASSERT (rvalue != NULL);
memcpy (rvalue, ecif.rvalue, cif->rtype->size);
}
}
/** private members **/
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif, float *vfp_stack);
void **args, ffi_cif *cif,
float *vfp_stack);
static void ffi_prep_incoming_args_VFP (char *stack, void **ret,
void** args, ffi_cif* cif, float *vfp_stack);
void **args, ffi_cif *cif,
float *vfp_stack);
void ffi_closure_SYSV (ffi_closure *);
@@ -386,7 +396,7 @@ ffi_closure_inner (ffi_closure *closure,
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
arg_area = (void **) alloca (cif->nargs * sizeof (void *));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
@@ -394,9 +404,9 @@ ffi_closure_inner (ffi_closure *closure,
* a structure, it will re-set RESP to point to the
* structure return address. */
if (cif->abi == FFI_VFP)
ffi_prep_incoming_args_VFP(args, respp, arg_area, cif, vfp_args);
ffi_prep_incoming_args_VFP (args, respp, arg_area, cif, vfp_args);
else
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif, vfp_args);
ffi_prep_incoming_args_SYSV (args, respp, arg_area, cif, vfp_args);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
@@ -405,7 +415,7 @@ ffi_closure_inner (ffi_closure *closure,
/*@-exportheader@*/
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
ffi_prep_incoming_args_SYSV (char *stack, void **rvalue,
void **avalue, ffi_cif *cif,
/* Used only under VFP hard-float ABI. */
float *vfp_stack)
@@ -418,7 +428,8 @@ ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
argp = stack;
if ( cif->flags == FFI_TYPE_STRUCT ) {
if (cif->flags == FFI_TYPE_STRUCT)
{
*rvalue = *(void **) argp;
argp += 4;
}
@@ -429,13 +440,13 @@ ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
{
size_t z;
argp = ffi_align(p_arg, argp);
argp = ffi_align (p_arg, argp);
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
*p_argv = (void *) argp;
p_argv++;
argp += z;
@@ -446,8 +457,8 @@ ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
/*@-exportheader@*/
static void
ffi_prep_incoming_args_VFP(char *stack, void **rvalue,
void **avalue, ffi_cif *cif,
ffi_prep_incoming_args_VFP (char *stack, void **rvalue,
void **avalue, ffi_cif * cif,
/* Used only under VFP hard-float ABI. */
float *vfp_stack)
/*@=exportheader@*/
@@ -460,11 +471,12 @@ ffi_prep_incoming_args_VFP(char *stack, void **rvalue,
char stack_used = 0;
char is_vfp_type;
FFI_ASSERT(cif->abi == FFI_VFP);
FFI_ASSERT (cif->abi == FFI_VFP);
regp = stack;
eo_regp = argp = regp + 16;
if ( cif->flags == FFI_TYPE_STRUCT ) {
if (cif->flags == FFI_TYPE_STRUCT)
{
*rvalue = *(void **) regp;
regp += 4;
}
@@ -476,39 +488,39 @@ ffi_prep_incoming_args_VFP(char *stack, void **rvalue,
size_t z;
is_vfp_type = vfp_type_p (*p_arg);
if(vi < cif->vfp_nargs && is_vfp_type)
if (vi < cif->vfp_nargs && is_vfp_type)
{
*p_argv++ = (void*)(vfp_stack + cif->vfp_args[vi++]);
*p_argv++ = (void *) (vfp_stack + cif->vfp_args[vi++]);
continue;
}
else if (!done_with_regs && !is_vfp_type)
{
char* tregp = ffi_align(p_arg, regp);
char *tregp = ffi_align (p_arg, regp);
z = (*p_arg)->size;
z = (z < 4)? 4 : z; // pad
z = (z < 4) ? 4 : z; // pad
/* if the arguments either fits into the registers or uses registers
* and stack, while we haven't read other things from the stack */
if(tregp + z <= eo_regp || !stack_used)
if (tregp + z <= eo_regp || !stack_used)
{
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) tregp;
*p_argv = (void *) tregp;
p_argv++;
regp = tregp + z;
// if we read past the last core register, make sure we have not read
// from the stack before and continue reading after regp
if(regp > eo_regp)
if (regp > eo_regp)
{
if(stack_used)
if (stack_used)
{
abort(); // we should never read past the end of the register
abort (); // we should never read past the end of the register
// are if the stack is already in use
}
argp = regp;
}
if(regp >= eo_regp)
if (regp >= eo_regp)
{
done_with_regs = 1;
stack_used = 1;
@@ -518,13 +530,13 @@ ffi_prep_incoming_args_VFP(char *stack, void **rvalue,
}
stack_used = 1;
argp = ffi_align(p_arg, argp);
argp = ffi_align (p_arg, argp);
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
*p_argv = (void *) argp;
p_argv++;
argp += z;
@@ -549,7 +561,8 @@ extern void *ffi_closure_trampoline_table_page;
typedef struct ffi_trampoline_table ffi_trampoline_table;
typedef struct ffi_trampoline_table_entry ffi_trampoline_table_entry;
struct ffi_trampoline_table {
struct ffi_trampoline_table
{
/* contiguous writable and executable pages */
vm_address_t config_page;
vm_address_t trampoline_page;
@@ -563,8 +576,9 @@ struct ffi_trampoline_table {
ffi_trampoline_table *next;
};
struct ffi_trampoline_table_entry {
void *(*trampoline)();
struct ffi_trampoline_table_entry
{
void *(*trampoline) ();
ffi_trampoline_table_entry *next;
};
@@ -591,22 +605,29 @@ ffi_trampoline_table_alloc ()
ffi_trampoline_table *table = NULL;
/* Loop until we can allocate two contiguous pages */
while (table == NULL) {
while (table == NULL)
{
vm_address_t config_page = 0x0;
kern_return_t kt;
/* Try to allocate two pages */
kt = vm_allocate (mach_task_self (), &config_page, PAGE_SIZE*2, VM_FLAGS_ANYWHERE);
if (kt != KERN_SUCCESS) {
fprintf(stderr, "vm_allocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
kt =
vm_allocate (mach_task_self (), &config_page, PAGE_SIZE * 2,
VM_FLAGS_ANYWHERE);
if (kt != KERN_SUCCESS)
{
fprintf (stderr, "vm_allocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
break;
}
/* Now drop the second half of the allocation to make room for the trampoline table */
vm_address_t trampoline_page = config_page+PAGE_SIZE;
vm_address_t trampoline_page = config_page + PAGE_SIZE;
kt = vm_deallocate (mach_task_self (), trampoline_page, PAGE_SIZE);
if (kt != KERN_SUCCESS) {
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
if (kt != KERN_SUCCESS)
{
fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
break;
}
@@ -614,13 +635,20 @@ ffi_trampoline_table_alloc ()
vm_prot_t cur_prot;
vm_prot_t max_prot;
kt = vm_remap (mach_task_self (), &trampoline_page, PAGE_SIZE, 0x0, FALSE, mach_task_self (), (vm_address_t) &ffi_closure_trampoline_table_page, FALSE, &cur_prot, &max_prot, VM_INHERIT_SHARE);
kt =
vm_remap (mach_task_self (), &trampoline_page, PAGE_SIZE, 0x0, FALSE,
mach_task_self (),
(vm_address_t) & ffi_closure_trampoline_table_page, FALSE,
&cur_prot, &max_prot, VM_INHERIT_SHARE);
/* If we lost access to the destination trampoline page, drop our config allocation mapping and retry */
if (kt != KERN_SUCCESS) {
if (kt != KERN_SUCCESS)
{
/* Log unexpected failures */
if (kt != KERN_NO_SPACE) {
fprintf(stderr, "vm_remap() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
if (kt != KERN_NO_SPACE)
{
fprintf (stderr, "vm_remap() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
}
vm_deallocate (mach_task_self (), config_page, PAGE_SIZE);
@@ -628,21 +656,24 @@ ffi_trampoline_table_alloc ()
}
/* We have valid trampoline and config pages */
table = calloc (1, sizeof(ffi_trampoline_table));
table = calloc (1, sizeof (ffi_trampoline_table));
table->free_count = FFI_TRAMPOLINE_COUNT;
table->config_page = config_page;
table->trampoline_page = trampoline_page;
/* Create and initialize the free list */
table->free_list_pool = calloc(FFI_TRAMPOLINE_COUNT, sizeof(ffi_trampoline_table_entry));
table->free_list_pool =
calloc (FFI_TRAMPOLINE_COUNT, sizeof (ffi_trampoline_table_entry));
uint16_t i;
for (i = 0; i < table->free_count; i++) {
for (i = 0; i < table->free_count; i++)
{
ffi_trampoline_table_entry *entry = &table->free_list_pool[i];
entry->trampoline = (void *) (table->trampoline_page + (i * FFI_TRAMPOLINE_SIZE));
entry->trampoline =
(void *) (table->trampoline_page + (i * FFI_TRAMPOLINE_SIZE));
if (i < table->free_count - 1)
entry->next = &table->free_list_pool[i+1];
entry->next = &table->free_list_pool[i + 1];
}
table->free_list = table->free_list_pool;
@@ -655,18 +686,20 @@ void *
ffi_closure_alloc (size_t size, void **code)
{
/* Create the closure */
ffi_closure *closure = malloc(size);
ffi_closure *closure = malloc (size);
if (closure == NULL)
return NULL;
pthread_mutex_lock(&ffi_trampoline_lock);
pthread_mutex_lock (&ffi_trampoline_lock);
/* Check for an active trampoline table with available entries. */
ffi_trampoline_table *table = ffi_trampoline_tables;
if (table == NULL || table->free_list == NULL) {
if (table == NULL || table->free_list == NULL)
{
table = ffi_trampoline_table_alloc ();
if (table == NULL) {
free(closure);
if (table == NULL)
{
free (closure);
return NULL;
}
@@ -684,7 +717,7 @@ ffi_closure_alloc (size_t size, void **code)
ffi_trampoline_tables->free_count--;
entry->next = NULL;
pthread_mutex_unlock(&ffi_trampoline_lock);
pthread_mutex_unlock (&ffi_trampoline_lock);
/* Initialize the return values */
*code = entry->trampoline;
@@ -699,7 +732,7 @@ ffi_closure_free (void *ptr)
{
ffi_closure *closure = ptr;
pthread_mutex_lock(&ffi_trampoline_lock);
pthread_mutex_lock (&ffi_trampoline_lock);
/* Fetch the table and entry references */
ffi_trampoline_table *table = closure->trampoline_table;
@@ -712,7 +745,9 @@ ffi_closure_free (void *ptr)
/* If all trampolines within this table are free, and at least one other table exists, deallocate
* the table */
if (table->free_count == FFI_TRAMPOLINE_COUNT && ffi_trampoline_tables != table) {
if (table->free_count == FFI_TRAMPOLINE_COUNT
&& ffi_trampoline_tables != table)
{
/* Remove from the list */
if (table->prev != NULL)
table->prev->next = table->next;
@@ -724,16 +759,21 @@ ffi_closure_free (void *ptr)
kern_return_t kt;
kt = vm_deallocate (mach_task_self (), table->config_page, PAGE_SIZE);
if (kt != KERN_SUCCESS)
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
kt = vm_deallocate (mach_task_self (), table->trampoline_page, PAGE_SIZE);
kt =
vm_deallocate (mach_task_self (), table->trampoline_page, PAGE_SIZE);
if (kt != KERN_SUCCESS)
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
/* Deallocate free list */
free (table->free_list_pool);
free (table);
} else if (ffi_trampoline_tables != table) {
}
else if (ffi_trampoline_tables != table)
{
/* Otherwise, bump this table to the top of the list */
table->prev = NULL;
table->next = ffi_trampoline_tables;
@@ -770,13 +810,12 @@ ffi_closure_free (void *ptr)
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
ffi_prep_closure_loc (ffi_closure * closure,
ffi_cif * cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data, void *codeloc)
{
void (*closure_func)(ffi_closure*) = NULL;
void (*closure_func) (ffi_closure *) = NULL;
if (cif->abi == FFI_SYSV)
closure_func = &ffi_closure_SYSV;
@@ -788,13 +827,11 @@ ffi_prep_closure_loc (ffi_closure* closure,
return FFI_BAD_ABI;
#if FFI_EXEC_TRAMPOLINE_TABLE
void **config = FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc);
void **config = FFI_TRAMPOLINE_CODELOC_CONFIG (codeloc);
config[0] = closure;
config[1] = closure_func;
#else
FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
closure_func, \
codeloc);
FFI_INIT_TRAMPOLINE (&closure->tramp[0], closure_func, codeloc);
#endif
closure->cif = cif;
@@ -806,7 +843,8 @@ ffi_prep_closure_loc (ffi_closure* closure,
/* Below are routines for VFP hard-float support. */
static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum)
static int
rec_vfp_type_p (ffi_type * t, int *elt, int *elnum)
{
switch (t->type)
{
@@ -833,7 +871,7 @@ static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum)
while (*el)
{
int el_elt = 0, el_elnum = 0;
if (! rec_vfp_type_p (*el, &el_elt, &el_elnum)
if (!rec_vfp_type_p (*el, &el_elt, &el_elnum)
|| (base_elt && base_elt != el_elt)
|| total_elnum + el_elnum > 4)
return 0;
@@ -845,12 +883,13 @@ static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum)
*elt = base_elt;
return 1;
}
default: ;
default:;
}
return 0;
}
static int vfp_type_p (ffi_type *t)
static int
vfp_type_p (ffi_type * t)
{
int elt, elnum;
if (rec_vfp_type_p (t, &elt, &elnum))
@@ -869,7 +908,8 @@ static int vfp_type_p (ffi_type *t)
return 0;
}
static int place_vfp_arg (ffi_cif *cif, ffi_type *t)
static int
place_vfp_arg (ffi_cif * cif, ffi_type * t)
{
short reg = cif->vfp_reg_free;
int nregs = t->size / sizeof (float);
@@ -903,7 +943,7 @@ static int place_vfp_arg (ffi_cif *cif, ffi_type *t)
cif->vfp_reg_free = reg;
}
return 0;
next_reg: ;
next_reg:;
}
// done, mark all regs as used
cif->vfp_reg_free = 16;
@@ -911,7 +951,8 @@ static int place_vfp_arg (ffi_cif *cif, ffi_type *t)
return 1;
}
static void layout_vfp_args (ffi_cif *cif)
static void
layout_vfp_args (ffi_cif * cif)
{
int i;
/* Init VFP fields */