Initial commit

This commit is contained in:
Anthony Green
2009-10-04 08:11:33 -04:00
commit c6dddbd02b
492 changed files with 157766 additions and 0 deletions

130
src/s390/.svn/entries Normal file
View File

@@ -0,0 +1,130 @@
10
dir
152280
svn://gcc.gnu.org/svn/gcc/trunk/libffi/src/s390
svn://gcc.gnu.org/svn/gcc
2009-06-04T15:43:03.499507Z
148172
aph
138bc75d-0d04-0410-961f-82ee72b054a4
ffitarget.h
file
2009-06-10T05:25:02.000000Z
1f71e34e447521ee847aa885d11d38cc
2009-06-04T15:11:12.475454Z
148171
aph
1978
ffi.c
file
2009-06-10T05:25:02.000000Z
b03c7644ee96611457e7eed78b58a9c0
2009-06-04T15:43:03.499507Z
148172
aph
22897
sysv.S
file
2009-06-10T05:25:02.000000Z
7e517d2afaece704e7af181367c01a76
2009-06-04T15:43:03.499507Z
148172
aph
10785

View File

@@ -0,0 +1,780 @@
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2000, 2007 Software AG
Copyright (c) 2008 Red Hat, Inc
S390 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/*====================================================================*/
/* Includes */
/* -------- */
/*====================================================================*/
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdio.h>
/*====================== End of Includes =============================*/
/*====================================================================*/
/* Defines */
/* ------- */
/*====================================================================*/
/* Maximum number of GPRs available for argument passing. */
#define MAX_GPRARGS 5
/* Maximum number of FPRs available for argument passing. */
#ifdef __s390x__
#define MAX_FPRARGS 4
#else
#define MAX_FPRARGS 2
#endif
/* Round to multiple of 16. */
#define ROUND_SIZE(size) (((size) + 15) & ~15)
/* If these values change, sysv.S must be adapted! */
#define FFI390_RET_VOID 0
#define FFI390_RET_STRUCT 1
#define FFI390_RET_FLOAT 2
#define FFI390_RET_DOUBLE 3
#define FFI390_RET_INT32 4
#define FFI390_RET_INT64 5
/*===================== End of Defines ===============================*/
/*====================================================================*/
/* Prototypes */
/* ---------- */
/*====================================================================*/
static void ffi_prep_args (unsigned char *, extended_cif *);
void
#if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2)
__attribute__ ((visibility ("hidden")))
#endif
ffi_closure_helper_SYSV (ffi_closure *, unsigned long *,
unsigned long long *, unsigned long *);
/*====================== End of Prototypes ===========================*/
/*====================================================================*/
/* Externals */
/* --------- */
/*====================================================================*/
extern void ffi_call_SYSV(unsigned,
extended_cif *,
void (*)(unsigned char *, extended_cif *),
unsigned,
void *,
void (*fn)(void));
extern void ffi_closure_SYSV(void);
/*====================== End of Externals ============================*/
/*====================================================================*/
/* */
/* Name - ffi_check_struct_type. */
/* */
/* Function - Determine if a structure can be passed within a */
/* general purpose or floating point register. */
/* */
/*====================================================================*/
static int
ffi_check_struct_type (ffi_type *arg)
{
size_t size = arg->size;
/* If the struct has just one element, look at that element
to find out whether to consider the struct as floating point. */
while (arg->type == FFI_TYPE_STRUCT
&& arg->elements[0] && !arg->elements[1])
arg = arg->elements[0];
/* Structs of size 1, 2, 4, and 8 are passed in registers,
just like the corresponding int/float types. */
switch (size)
{
case 1:
return FFI_TYPE_UINT8;
case 2:
return FFI_TYPE_UINT16;
case 4:
if (arg->type == FFI_TYPE_FLOAT)
return FFI_TYPE_FLOAT;
else
return FFI_TYPE_UINT32;
case 8:
if (arg->type == FFI_TYPE_DOUBLE)
return FFI_TYPE_DOUBLE;
else
return FFI_TYPE_UINT64;
default:
break;
}
/* Other structs are passed via a pointer to the data. */
return FFI_TYPE_POINTER;
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_args. */
/* */
/* Function - Prepare parameters for call to function. */
/* */
/* ffi_prep_args is called by the assembly routine once stack space */
/* has been allocated for the function's arguments. */
/* */
/*====================================================================*/
static void
ffi_prep_args (unsigned char *stack, extended_cif *ecif)
{
/* The stack space will be filled with those areas:
FPR argument register save area (highest addresses)
GPR argument register save area
temporary struct copies
overflow argument area (lowest addresses)
We set up the following pointers:
p_fpr: bottom of the FPR area (growing upwards)
p_gpr: bottom of the GPR area (growing upwards)
p_ov: bottom of the overflow area (growing upwards)
p_struct: top of the struct copy area (growing downwards)
All areas are kept aligned to twice the word size. */
int gpr_off = ecif->cif->bytes;
int fpr_off = gpr_off + ROUND_SIZE (MAX_GPRARGS * sizeof (long));
unsigned long long *p_fpr = (unsigned long long *)(stack + fpr_off);
unsigned long *p_gpr = (unsigned long *)(stack + gpr_off);
unsigned char *p_struct = (unsigned char *)p_gpr;
unsigned long *p_ov = (unsigned long *)stack;
int n_fpr = 0;
int n_gpr = 0;
int n_ov = 0;
ffi_type **ptr;
void **p_argv = ecif->avalue;
int i;
/* If we returning a structure then we set the first parameter register
to the address of where we are returning this structure. */
if (ecif->cif->flags == FFI390_RET_STRUCT)
p_gpr[n_gpr++] = (unsigned long) ecif->rvalue;
/* Now for the arguments. */
for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
i > 0;
i--, ptr++, p_argv++)
{
void *arg = *p_argv;
int type = (*ptr)->type;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
/* 16-byte long double is passed like a struct. */
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
/* Check how a structure type is passed. */
if (type == FFI_TYPE_STRUCT)
{
type = ffi_check_struct_type (*ptr);
/* If we pass the struct via pointer, copy the data. */
if (type == FFI_TYPE_POINTER)
{
p_struct -= ROUND_SIZE ((*ptr)->size);
memcpy (p_struct, (char *)arg, (*ptr)->size);
arg = &p_struct;
}
}
/* Now handle all primitive int/pointer/float data types. */
switch (type)
{
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = *(unsigned long long *) arg;
else
#ifdef __s390x__
p_ov[n_ov++] = *(unsigned long *) arg;
#else
p_ov[n_ov++] = ((unsigned long *) arg)[0],
p_ov[n_ov++] = ((unsigned long *) arg)[1];
#endif
break;
case FFI_TYPE_FLOAT:
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = (long long) *(unsigned int *) arg << 32;
else
p_ov[n_ov++] = *(unsigned int *) arg;
break;
case FFI_TYPE_POINTER:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = (unsigned long)*(unsigned char **) arg;
else
p_ov[n_ov++] = (unsigned long)*(unsigned char **) arg;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned long *) arg;
else
p_ov[n_ov++] = *(unsigned long *) arg;
#else
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = ((unsigned long *) arg)[0],
p_gpr[n_gpr++] = ((unsigned long *) arg)[1];
else
p_ov[n_ov++] = ((unsigned long *) arg)[0],
p_ov[n_ov++] = ((unsigned long *) arg)[1];
#endif
break;
case FFI_TYPE_UINT32:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned int *) arg;
else
p_ov[n_ov++] = *(unsigned int *) arg;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed int *) arg;
else
p_ov[n_ov++] = *(signed int *) arg;
break;
case FFI_TYPE_UINT16:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned short *) arg;
else
p_ov[n_ov++] = *(unsigned short *) arg;
break;
case FFI_TYPE_SINT16:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed short *) arg;
else
p_ov[n_ov++] = *(signed short *) arg;
break;
case FFI_TYPE_UINT8:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned char *) arg;
else
p_ov[n_ov++] = *(unsigned char *) arg;
break;
case FFI_TYPE_SINT8:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed char *) arg;
else
p_ov[n_ov++] = *(signed char *) arg;
break;
default:
FFI_ASSERT (0);
break;
}
}
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_cif_machdep. */
/* */
/* Function - Perform machine dependent CIF processing. */
/* */
/*====================================================================*/
ffi_status
ffi_prep_cif_machdep(ffi_cif *cif)
{
size_t struct_size = 0;
int n_gpr = 0;
int n_fpr = 0;
int n_ov = 0;
ffi_type **ptr;
int i;
/* Determine return value handling. */
switch (cif->rtype->type)
{
/* Void is easy. */
case FFI_TYPE_VOID:
cif->flags = FFI390_RET_VOID;
break;
/* Structures are returned via a hidden pointer. */
case FFI_TYPE_STRUCT:
cif->flags = FFI390_RET_STRUCT;
n_gpr++; /* We need one GPR to pass the pointer. */
break;
/* Floating point values are returned in fpr 0. */
case FFI_TYPE_FLOAT:
cif->flags = FFI390_RET_FLOAT;
break;
case FFI_TYPE_DOUBLE:
cif->flags = FFI390_RET_DOUBLE;
break;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
cif->flags = FFI390_RET_STRUCT;
n_gpr++;
break;
#endif
/* Integer values are returned in gpr 2 (and gpr 3
for 64-bit values on 31-bit machines). */
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
cif->flags = FFI390_RET_INT64;
break;
case FFI_TYPE_POINTER:
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
/* These are to be extended to word size. */
#ifdef __s390x__
cif->flags = FFI390_RET_INT64;
#else
cif->flags = FFI390_RET_INT32;
#endif
break;
default:
FFI_ASSERT (0);
break;
}
/* Now for the arguments. */
for (ptr = cif->arg_types, i = cif->nargs;
i > 0;
i--, ptr++)
{
int type = (*ptr)->type;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
/* 16-byte long double is passed like a struct. */
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
/* Check how a structure type is passed. */
if (type == FFI_TYPE_STRUCT)
{
type = ffi_check_struct_type (*ptr);
/* If we pass the struct via pointer, we must reserve space
to copy its data for proper call-by-value semantics. */
if (type == FFI_TYPE_POINTER)
struct_size += ROUND_SIZE ((*ptr)->size);
}
/* Now handle all primitive int/float data types. */
switch (type)
{
/* The first MAX_FPRARGS floating point arguments
go in FPRs, the rest overflow to the stack. */
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
n_fpr++;
else
n_ov += sizeof (double) / sizeof (long);
break;
case FFI_TYPE_FLOAT:
if (n_fpr < MAX_FPRARGS)
n_fpr++;
else
n_ov++;
break;
/* On 31-bit machines, 64-bit integers are passed in GPR pairs,
if one is still available, or else on the stack. If only one
register is free, skip the register (it won't be used for any
subsequent argument either). */
#ifndef __s390x__
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
n_gpr += 2;
else
n_ov += 2;
break;
#endif
/* Everything else is passed in GPRs (until MAX_GPRARGS
have been used) or overflows to the stack. */
default:
if (n_gpr < MAX_GPRARGS)
n_gpr++;
else
n_ov++;
break;
}
}
/* Total stack space as required for overflow arguments
and temporary structure copies. */
cif->bytes = ROUND_SIZE (n_ov * sizeof (long)) + struct_size;
return FFI_OK;
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_call. */
/* */
/* Function - Call the FFI routine. */
/* */
/*====================================================================*/
void
ffi_call(ffi_cif *cif,
void (*fn)(void),
void *rvalue,
void **avalue)
{
int ret_type = cif->flags;
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
ecif.rvalue = rvalue;
/* If we don't have a return value, we need to fake one. */
if (rvalue == NULL)
{
if (ret_type == FFI390_RET_STRUCT)
ecif.rvalue = alloca (cif->rtype->size);
else
ret_type = FFI390_RET_VOID;
}
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (cif->bytes, &ecif, ffi_prep_args,
ret_type, ecif.rvalue, fn);
break;
default:
FFI_ASSERT (0);
break;
}
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_closure_helper_SYSV. */
/* */
/* Function - Call a FFI closure target function. */
/* */
/*====================================================================*/
void
ffi_closure_helper_SYSV (ffi_closure *closure,
unsigned long *p_gpr,
unsigned long long *p_fpr,
unsigned long *p_ov)
{
unsigned long long ret_buffer;
void *rvalue = &ret_buffer;
void **avalue;
void **p_arg;
int n_gpr = 0;
int n_fpr = 0;
int n_ov = 0;
ffi_type **ptr;
int i;
/* Allocate buffer for argument list pointers. */
p_arg = avalue = alloca (closure->cif->nargs * sizeof (void *));
/* If we returning a structure, pass the structure address
directly to the target function. Otherwise, have the target
function store the return value to the GPR save area. */
if (closure->cif->flags == FFI390_RET_STRUCT)
rvalue = (void *) p_gpr[n_gpr++];
/* Now for the arguments. */
for (ptr = closure->cif->arg_types, i = closure->cif->nargs;
i > 0;
i--, p_arg++, ptr++)
{
int deref_struct_pointer = 0;
int type = (*ptr)->type;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
/* 16-byte long double is passed like a struct. */
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
/* Check how a structure type is passed. */
if (type == FFI_TYPE_STRUCT)
{
type = ffi_check_struct_type (*ptr);
/* If we pass the struct via pointer, remember to
retrieve the pointer later. */
if (type == FFI_TYPE_POINTER)
deref_struct_pointer = 1;
}
/* Pointers are passed like UINTs of the same size. */
if (type == FFI_TYPE_POINTER)
#ifdef __s390x__
type = FFI_TYPE_UINT64;
#else
type = FFI_TYPE_UINT32;
#endif
/* Now handle all primitive int/float data types. */
switch (type)
{
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
*p_arg = &p_fpr[n_fpr++];
else
*p_arg = &p_ov[n_ov],
n_ov += sizeof (double) / sizeof (long);
break;
case FFI_TYPE_FLOAT:
if (n_fpr < MAX_FPRARGS)
*p_arg = &p_fpr[n_fpr++];
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
if (n_gpr < MAX_GPRARGS)
*p_arg = &p_gpr[n_gpr++];
else
*p_arg = &p_ov[n_ov++];
#else
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
*p_arg = &p_gpr[n_gpr], n_gpr += 2;
else
*p_arg = &p_ov[n_ov], n_ov += 2;
#endif
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
if (n_gpr < MAX_GPRARGS)
*p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 4;
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4;
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
if (n_gpr < MAX_GPRARGS)
*p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 2;
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 2;
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
if (n_gpr < MAX_GPRARGS)
*p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 1;
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 1;
break;
default:
FFI_ASSERT (0);
break;
}
/* If this is a struct passed via pointer, we need to
actually retrieve that pointer. */
if (deref_struct_pointer)
*p_arg = *(void **)*p_arg;
}
/* Call the target function. */
(closure->fun) (closure->cif, rvalue, avalue, closure->user_data);
/* Convert the return value. */
switch (closure->cif->rtype->type)
{
/* Void is easy, and so is struct. */
case FFI_TYPE_VOID:
case FFI_TYPE_STRUCT:
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
#endif
break;
/* Floating point values are returned in fpr 0. */
case FFI_TYPE_FLOAT:
p_fpr[0] = (long long) *(unsigned int *) rvalue << 32;
break;
case FFI_TYPE_DOUBLE:
p_fpr[0] = *(unsigned long long *) rvalue;
break;
/* Integer values are returned in gpr 2 (and gpr 3
for 64-bit values on 31-bit machines). */
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
p_gpr[0] = *(unsigned long *) rvalue;
#else
p_gpr[0] = ((unsigned long *) rvalue)[0],
p_gpr[1] = ((unsigned long *) rvalue)[1];
#endif
break;
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT32:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT8:
p_gpr[0] = *(unsigned long *) rvalue;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT8:
p_gpr[0] = *(signed long *) rvalue;
break;
default:
FFI_ASSERT (0);
break;
}
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_closure_loc. */
/* */
/* Function - Prepare a FFI closure. */
/* */
/*====================================================================*/
ffi_status
ffi_prep_closure_loc (ffi_closure *closure,
ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data,
void *codeloc)
{
FFI_ASSERT (cif->abi == FFI_SYSV);
#ifndef __s390x__
*(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */
*(short *)&closure->tramp [2] = 0x9801; /* lm %r0,%r1,6(%r1) */
*(short *)&closure->tramp [4] = 0x1006;
*(short *)&closure->tramp [6] = 0x07f1; /* br %r1 */
*(long *)&closure->tramp [8] = (long)codeloc;
*(long *)&closure->tramp[12] = (long)&ffi_closure_SYSV;
#else
*(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */
*(short *)&closure->tramp [2] = 0xeb01; /* lmg %r0,%r1,14(%r1) */
*(short *)&closure->tramp [4] = 0x100e;
*(short *)&closure->tramp [6] = 0x0004;
*(short *)&closure->tramp [8] = 0x07f1; /* br %r1 */
*(long *)&closure->tramp[16] = (long)codeloc;
*(long *)&closure->tramp[24] = (long)&ffi_closure_SYSV;
#endif
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/*======================== End of Routine ============================*/

View File

@@ -0,0 +1,60 @@
/* -----------------------------------------------------------------*-C-*-
ffitarget.h - Copyright (c) 1996-2003 Red Hat, Inc.
Target configuration macros for S390.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef LIBFFI_TARGET_H
#define LIBFFI_TARGET_H
#if defined (__s390x__)
#define S390X
#endif
/* ---- System specific configurations ----------------------------------- */
#ifndef LIBFFI_ASM
typedef unsigned long ffi_arg;
typedef signed long ffi_sarg;
typedef enum ffi_abi {
FFI_FIRST_ABI = 0,
FFI_SYSV,
FFI_DEFAULT_ABI = FFI_SYSV,
FFI_LAST_ABI = FFI_DEFAULT_ABI + 1
} ffi_abi;
#endif
/* ---- Definitions for closures ----------------------------------------- */
#define FFI_CLOSURES 1
#ifdef S390X
#define FFI_TRAMPOLINE_SIZE 32
#else
#define FFI_TRAMPOLINE_SIZE 16
#endif
#define FFI_NATIVE_RAW_API 0
#endif

View File

@@ -0,0 +1,434 @@
/* -----------------------------------------------------------------------
sysv.S - Copyright (c) 2000 Software AG
Copyright (c) 2008 Red Hat, Inc.
S390 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#ifndef __s390x__
.text
# r2: cif->bytes
# r3: &ecif
# r4: ffi_prep_args
# r5: ret_type
# r6: ecif.rvalue
# ov: fn
# This assumes we are using gas.
.globl ffi_call_SYSV
.type ffi_call_SYSV,%function
ffi_call_SYSV:
.LFB1:
stm %r6,%r15,24(%r15) # Save registers
.LCFI0:
basr %r13,0 # Set up base register
.Lbase:
lr %r11,%r15 # Set up frame pointer
.LCFI1:
sr %r15,%r2
ahi %r15,-96-48 # Allocate stack
lr %r8,%r6 # Save ecif.rvalue
sr %r9,%r9
ic %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address
l %r7,96(%r11) # Load function address
st %r11,0(%r15) # Set up back chain
ahi %r11,-48 # Register save area
.LCFI2:
la %r2,96(%r15) # Save area
# r3 already holds &ecif
basr %r14,%r4 # Call ffi_prep_args
lm %r2,%r6,0(%r11) # Load arguments
ld %f0,32(%r11)
ld %f2,40(%r11)
la %r14,0(%r13,%r9) # Set return address
br %r7 # ... and call function
.LretNone: # Return void
l %r4,48+56(%r11)
lm %r6,%r15,48+24(%r11)
br %r4
.LretFloat:
l %r4,48+56(%r11)
ste %f0,0(%r8) # Return float
lm %r6,%r15,48+24(%r11)
br %r4
.LretDouble:
l %r4,48+56(%r11)
std %f0,0(%r8) # Return double
lm %r6,%r15,48+24(%r11)
br %r4
.LretInt32:
l %r4,48+56(%r11)
st %r2,0(%r8) # Return int
lm %r6,%r15,48+24(%r11)
br %r4
.LretInt64:
l %r4,48+56(%r11)
stm %r2,%r3,0(%r8) # Return long long
lm %r6,%r15,48+24(%r11)
br %r4
.Ltable:
.byte .LretNone-.Lbase # FFI390_RET_VOID
.byte .LretNone-.Lbase # FFI390_RET_STRUCT
.byte .LretFloat-.Lbase # FFI390_RET_FLOAT
.byte .LretDouble-.Lbase # FFI390_RET_DOUBLE
.byte .LretInt32-.Lbase # FFI390_RET_INT32
.byte .LretInt64-.Lbase # FFI390_RET_INT64
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.globl ffi_closure_SYSV
.type ffi_closure_SYSV,%function
ffi_closure_SYSV:
.LFB2:
stm %r12,%r15,48(%r15) # Save registers
.LCFI10:
basr %r13,0 # Set up base register
.Lcbase:
stm %r2,%r6,8(%r15) # Save arguments
std %f0,64(%r15)
std %f2,72(%r15)
lr %r1,%r15 # Set up stack frame
ahi %r15,-96
.LCFI11:
l %r12,.Lchelper-.Lcbase(%r13) # Get helper function
lr %r2,%r0 # Closure
la %r3,8(%r1) # GPRs
la %r4,64(%r1) # FPRs
la %r5,96(%r1) # Overflow
st %r1,0(%r15) # Set up back chain
bas %r14,0(%r12,%r13) # Call helper
l %r4,96+56(%r15)
ld %f0,96+64(%r15) # Load return registers
lm %r2,%r3,96+8(%r15)
lm %r12,%r15,96+48(%r15)
br %r4
.align 4
.Lchelper:
.long ffi_closure_helper_SYSV-.Lcbase
.LFE2:
.ffi_closure_SYSV_end:
.size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.4byte .LECIE1-.LSCIE1 # Length of Common Information Entry
.LSCIE1:
.4byte 0x0 # CIE Identifier Tag
.byte 0x1 # CIE Version
.ascii "zR\0" # CIE Augmentation
.uleb128 0x1 # CIE Code Alignment Factor
.sleb128 -4 # CIE Data Alignment Factor
.byte 0xe # CIE RA Column
.uleb128 0x1 # Augmentation size
.byte 0x1b # FDE Encoding (pcrel sdata4)
.byte 0xc # DW_CFA_def_cfa
.uleb128 0xf
.uleb128 0x60
.align 4
.LECIE1:
.LSFDE1:
.4byte .LEFDE1-.LASFDE1 # FDE Length
.LASFDE1:
.4byte .LASFDE1-.Lframe1 # FDE CIE offset
.4byte .LFB1-. # FDE initial location
.4byte .LFE1-.LFB1 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI0-.LFB1
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x9
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0xa
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0xb
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0xc
.byte 0x8b # DW_CFA_offset, column 0xb
.uleb128 0xd
.byte 0x8a # DW_CFA_offset, column 0xa
.uleb128 0xe
.byte 0x89 # DW_CFA_offset, column 0x9
.uleb128 0xf
.byte 0x88 # DW_CFA_offset, column 0x8
.uleb128 0x10
.byte 0x87 # DW_CFA_offset, column 0x7
.uleb128 0x11
.byte 0x86 # DW_CFA_offset, column 0x6
.uleb128 0x12
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI1-.LCFI0
.byte 0xd # DW_CFA_def_cfa_register
.uleb128 0xb
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI2-.LCFI1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0x90
.align 4
.LEFDE1:
.LSFDE2:
.4byte .LEFDE2-.LASFDE2 # FDE Length
.LASFDE2:
.4byte .LASFDE2-.Lframe1 # FDE CIE offset
.4byte .LFB2-. # FDE initial location
.4byte .LFE2-.LFB2 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI10-.LFB2
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x9
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0xa
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0xb
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0xc
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI11-.LCFI10
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0xc0
.align 4
.LEFDE2:
#else
.text
# r2: cif->bytes
# r3: &ecif
# r4: ffi_prep_args
# r5: ret_type
# r6: ecif.rvalue
# ov: fn
# This assumes we are using gas.
.globl ffi_call_SYSV
.type ffi_call_SYSV,%function
ffi_call_SYSV:
.LFB1:
stmg %r6,%r15,48(%r15) # Save registers
.LCFI0:
larl %r13,.Lbase # Set up base register
lgr %r11,%r15 # Set up frame pointer
.LCFI1:
sgr %r15,%r2
aghi %r15,-160-80 # Allocate stack
lgr %r8,%r6 # Save ecif.rvalue
llgc %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address
lg %r7,160(%r11) # Load function address
stg %r11,0(%r15) # Set up back chain
aghi %r11,-80 # Register save area
.LCFI2:
la %r2,160(%r15) # Save area
# r3 already holds &ecif
basr %r14,%r4 # Call ffi_prep_args
lmg %r2,%r6,0(%r11) # Load arguments
ld %f0,48(%r11)
ld %f2,56(%r11)
ld %f4,64(%r11)
ld %f6,72(%r11)
la %r14,0(%r13,%r9) # Set return address
br %r7 # ... and call function
.Lbase:
.LretNone: # Return void
lg %r4,80+112(%r11)
lmg %r6,%r15,80+48(%r11)
br %r4
.LretFloat:
lg %r4,80+112(%r11)
ste %f0,0(%r8) # Return float
lmg %r6,%r15,80+48(%r11)
br %r4
.LretDouble:
lg %r4,80+112(%r11)
std %f0,0(%r8) # Return double
lmg %r6,%r15,80+48(%r11)
br %r4
.LretInt32:
lg %r4,80+112(%r11)
st %r2,0(%r8) # Return int
lmg %r6,%r15,80+48(%r11)
br %r4
.LretInt64:
lg %r4,80+112(%r11)
stg %r2,0(%r8) # Return long
lmg %r6,%r15,80+48(%r11)
br %r4
.Ltable:
.byte .LretNone-.Lbase # FFI390_RET_VOID
.byte .LretNone-.Lbase # FFI390_RET_STRUCT
.byte .LretFloat-.Lbase # FFI390_RET_FLOAT
.byte .LretDouble-.Lbase # FFI390_RET_DOUBLE
.byte .LretInt32-.Lbase # FFI390_RET_INT32
.byte .LretInt64-.Lbase # FFI390_RET_INT64
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.globl ffi_closure_SYSV
.type ffi_closure_SYSV,%function
ffi_closure_SYSV:
.LFB2:
stmg %r14,%r15,112(%r15) # Save registers
.LCFI10:
stmg %r2,%r6,16(%r15) # Save arguments
std %f0,128(%r15)
std %f2,136(%r15)
std %f4,144(%r15)
std %f6,152(%r15)
lgr %r1,%r15 # Set up stack frame
aghi %r15,-160
.LCFI11:
lgr %r2,%r0 # Closure
la %r3,16(%r1) # GPRs
la %r4,128(%r1) # FPRs
la %r5,160(%r1) # Overflow
stg %r1,0(%r15) # Set up back chain
brasl %r14,ffi_closure_helper_SYSV # Call helper
lg %r14,160+112(%r15)
ld %f0,160+128(%r15) # Load return registers
lg %r2,160+16(%r15)
la %r15,160(%r15)
br %r14
.LFE2:
.ffi_closure_SYSV_end:
.size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.4byte .LECIE1-.LSCIE1 # Length of Common Information Entry
.LSCIE1:
.4byte 0x0 # CIE Identifier Tag
.byte 0x1 # CIE Version
.ascii "zR\0" # CIE Augmentation
.uleb128 0x1 # CIE Code Alignment Factor
.sleb128 -8 # CIE Data Alignment Factor
.byte 0xe # CIE RA Column
.uleb128 0x1 # Augmentation size
.byte 0x1b # FDE Encoding (pcrel sdata4)
.byte 0xc # DW_CFA_def_cfa
.uleb128 0xf
.uleb128 0xa0
.align 8
.LECIE1:
.LSFDE1:
.4byte .LEFDE1-.LASFDE1 # FDE Length
.LASFDE1:
.4byte .LASFDE1-.Lframe1 # FDE CIE offset
.4byte .LFB1-. # FDE initial location
.4byte .LFE1-.LFB1 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI0-.LFB1
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x5
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0x6
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0x7
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0x8
.byte 0x8b # DW_CFA_offset, column 0xb
.uleb128 0x9
.byte 0x8a # DW_CFA_offset, column 0xa
.uleb128 0xa
.byte 0x89 # DW_CFA_offset, column 0x9
.uleb128 0xb
.byte 0x88 # DW_CFA_offset, column 0x8
.uleb128 0xc
.byte 0x87 # DW_CFA_offset, column 0x7
.uleb128 0xd
.byte 0x86 # DW_CFA_offset, column 0x6
.uleb128 0xe
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI1-.LCFI0
.byte 0xd # DW_CFA_def_cfa_register
.uleb128 0xb
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI2-.LCFI1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0xf0
.align 8
.LEFDE1:
.LSFDE2:
.4byte .LEFDE2-.LASFDE2 # FDE Length
.LASFDE2:
.4byte .LASFDE2-.Lframe1 # FDE CIE offset
.4byte .LFB2-. # FDE initial location
.4byte .LFE2-.LFB2 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI10-.LFB2
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x5
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0x6
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI11-.LCFI10
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0x140
.align 8
.LEFDE2:
#endif
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits
#endif

780
src/s390/ffi.c Normal file
View File

@@ -0,0 +1,780 @@
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2000, 2007 Software AG
Copyright (c) 2008 Red Hat, Inc
S390 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/*====================================================================*/
/* Includes */
/* -------- */
/*====================================================================*/
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdio.h>
/*====================== End of Includes =============================*/
/*====================================================================*/
/* Defines */
/* ------- */
/*====================================================================*/
/* Maximum number of GPRs available for argument passing. */
#define MAX_GPRARGS 5
/* Maximum number of FPRs available for argument passing. */
#ifdef __s390x__
#define MAX_FPRARGS 4
#else
#define MAX_FPRARGS 2
#endif
/* Round to multiple of 16. */
#define ROUND_SIZE(size) (((size) + 15) & ~15)
/* If these values change, sysv.S must be adapted! */
#define FFI390_RET_VOID 0
#define FFI390_RET_STRUCT 1
#define FFI390_RET_FLOAT 2
#define FFI390_RET_DOUBLE 3
#define FFI390_RET_INT32 4
#define FFI390_RET_INT64 5
/*===================== End of Defines ===============================*/
/*====================================================================*/
/* Prototypes */
/* ---------- */
/*====================================================================*/
static void ffi_prep_args (unsigned char *, extended_cif *);
void
#if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2)
__attribute__ ((visibility ("hidden")))
#endif
ffi_closure_helper_SYSV (ffi_closure *, unsigned long *,
unsigned long long *, unsigned long *);
/*====================== End of Prototypes ===========================*/
/*====================================================================*/
/* Externals */
/* --------- */
/*====================================================================*/
extern void ffi_call_SYSV(unsigned,
extended_cif *,
void (*)(unsigned char *, extended_cif *),
unsigned,
void *,
void (*fn)(void));
extern void ffi_closure_SYSV(void);
/*====================== End of Externals ============================*/
/*====================================================================*/
/* */
/* Name - ffi_check_struct_type. */
/* */
/* Function - Determine if a structure can be passed within a */
/* general purpose or floating point register. */
/* */
/*====================================================================*/
static int
ffi_check_struct_type (ffi_type *arg)
{
size_t size = arg->size;
/* If the struct has just one element, look at that element
to find out whether to consider the struct as floating point. */
while (arg->type == FFI_TYPE_STRUCT
&& arg->elements[0] && !arg->elements[1])
arg = arg->elements[0];
/* Structs of size 1, 2, 4, and 8 are passed in registers,
just like the corresponding int/float types. */
switch (size)
{
case 1:
return FFI_TYPE_UINT8;
case 2:
return FFI_TYPE_UINT16;
case 4:
if (arg->type == FFI_TYPE_FLOAT)
return FFI_TYPE_FLOAT;
else
return FFI_TYPE_UINT32;
case 8:
if (arg->type == FFI_TYPE_DOUBLE)
return FFI_TYPE_DOUBLE;
else
return FFI_TYPE_UINT64;
default:
break;
}
/* Other structs are passed via a pointer to the data. */
return FFI_TYPE_POINTER;
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_args. */
/* */
/* Function - Prepare parameters for call to function. */
/* */
/* ffi_prep_args is called by the assembly routine once stack space */
/* has been allocated for the function's arguments. */
/* */
/*====================================================================*/
static void
ffi_prep_args (unsigned char *stack, extended_cif *ecif)
{
/* The stack space will be filled with those areas:
FPR argument register save area (highest addresses)
GPR argument register save area
temporary struct copies
overflow argument area (lowest addresses)
We set up the following pointers:
p_fpr: bottom of the FPR area (growing upwards)
p_gpr: bottom of the GPR area (growing upwards)
p_ov: bottom of the overflow area (growing upwards)
p_struct: top of the struct copy area (growing downwards)
All areas are kept aligned to twice the word size. */
int gpr_off = ecif->cif->bytes;
int fpr_off = gpr_off + ROUND_SIZE (MAX_GPRARGS * sizeof (long));
unsigned long long *p_fpr = (unsigned long long *)(stack + fpr_off);
unsigned long *p_gpr = (unsigned long *)(stack + gpr_off);
unsigned char *p_struct = (unsigned char *)p_gpr;
unsigned long *p_ov = (unsigned long *)stack;
int n_fpr = 0;
int n_gpr = 0;
int n_ov = 0;
ffi_type **ptr;
void **p_argv = ecif->avalue;
int i;
/* If we returning a structure then we set the first parameter register
to the address of where we are returning this structure. */
if (ecif->cif->flags == FFI390_RET_STRUCT)
p_gpr[n_gpr++] = (unsigned long) ecif->rvalue;
/* Now for the arguments. */
for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
i > 0;
i--, ptr++, p_argv++)
{
void *arg = *p_argv;
int type = (*ptr)->type;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
/* 16-byte long double is passed like a struct. */
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
/* Check how a structure type is passed. */
if (type == FFI_TYPE_STRUCT)
{
type = ffi_check_struct_type (*ptr);
/* If we pass the struct via pointer, copy the data. */
if (type == FFI_TYPE_POINTER)
{
p_struct -= ROUND_SIZE ((*ptr)->size);
memcpy (p_struct, (char *)arg, (*ptr)->size);
arg = &p_struct;
}
}
/* Now handle all primitive int/pointer/float data types. */
switch (type)
{
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = *(unsigned long long *) arg;
else
#ifdef __s390x__
p_ov[n_ov++] = *(unsigned long *) arg;
#else
p_ov[n_ov++] = ((unsigned long *) arg)[0],
p_ov[n_ov++] = ((unsigned long *) arg)[1];
#endif
break;
case FFI_TYPE_FLOAT:
if (n_fpr < MAX_FPRARGS)
p_fpr[n_fpr++] = (long long) *(unsigned int *) arg << 32;
else
p_ov[n_ov++] = *(unsigned int *) arg;
break;
case FFI_TYPE_POINTER:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = (unsigned long)*(unsigned char **) arg;
else
p_ov[n_ov++] = (unsigned long)*(unsigned char **) arg;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned long *) arg;
else
p_ov[n_ov++] = *(unsigned long *) arg;
#else
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = ((unsigned long *) arg)[0],
p_gpr[n_gpr++] = ((unsigned long *) arg)[1];
else
p_ov[n_ov++] = ((unsigned long *) arg)[0],
p_ov[n_ov++] = ((unsigned long *) arg)[1];
#endif
break;
case FFI_TYPE_UINT32:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned int *) arg;
else
p_ov[n_ov++] = *(unsigned int *) arg;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed int *) arg;
else
p_ov[n_ov++] = *(signed int *) arg;
break;
case FFI_TYPE_UINT16:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned short *) arg;
else
p_ov[n_ov++] = *(unsigned short *) arg;
break;
case FFI_TYPE_SINT16:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed short *) arg;
else
p_ov[n_ov++] = *(signed short *) arg;
break;
case FFI_TYPE_UINT8:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(unsigned char *) arg;
else
p_ov[n_ov++] = *(unsigned char *) arg;
break;
case FFI_TYPE_SINT8:
if (n_gpr < MAX_GPRARGS)
p_gpr[n_gpr++] = *(signed char *) arg;
else
p_ov[n_ov++] = *(signed char *) arg;
break;
default:
FFI_ASSERT (0);
break;
}
}
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_cif_machdep. */
/* */
/* Function - Perform machine dependent CIF processing. */
/* */
/*====================================================================*/
ffi_status
ffi_prep_cif_machdep(ffi_cif *cif)
{
size_t struct_size = 0;
int n_gpr = 0;
int n_fpr = 0;
int n_ov = 0;
ffi_type **ptr;
int i;
/* Determine return value handling. */
switch (cif->rtype->type)
{
/* Void is easy. */
case FFI_TYPE_VOID:
cif->flags = FFI390_RET_VOID;
break;
/* Structures are returned via a hidden pointer. */
case FFI_TYPE_STRUCT:
cif->flags = FFI390_RET_STRUCT;
n_gpr++; /* We need one GPR to pass the pointer. */
break;
/* Floating point values are returned in fpr 0. */
case FFI_TYPE_FLOAT:
cif->flags = FFI390_RET_FLOAT;
break;
case FFI_TYPE_DOUBLE:
cif->flags = FFI390_RET_DOUBLE;
break;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
cif->flags = FFI390_RET_STRUCT;
n_gpr++;
break;
#endif
/* Integer values are returned in gpr 2 (and gpr 3
for 64-bit values on 31-bit machines). */
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
cif->flags = FFI390_RET_INT64;
break;
case FFI_TYPE_POINTER:
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
/* These are to be extended to word size. */
#ifdef __s390x__
cif->flags = FFI390_RET_INT64;
#else
cif->flags = FFI390_RET_INT32;
#endif
break;
default:
FFI_ASSERT (0);
break;
}
/* Now for the arguments. */
for (ptr = cif->arg_types, i = cif->nargs;
i > 0;
i--, ptr++)
{
int type = (*ptr)->type;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
/* 16-byte long double is passed like a struct. */
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
/* Check how a structure type is passed. */
if (type == FFI_TYPE_STRUCT)
{
type = ffi_check_struct_type (*ptr);
/* If we pass the struct via pointer, we must reserve space
to copy its data for proper call-by-value semantics. */
if (type == FFI_TYPE_POINTER)
struct_size += ROUND_SIZE ((*ptr)->size);
}
/* Now handle all primitive int/float data types. */
switch (type)
{
/* The first MAX_FPRARGS floating point arguments
go in FPRs, the rest overflow to the stack. */
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
n_fpr++;
else
n_ov += sizeof (double) / sizeof (long);
break;
case FFI_TYPE_FLOAT:
if (n_fpr < MAX_FPRARGS)
n_fpr++;
else
n_ov++;
break;
/* On 31-bit machines, 64-bit integers are passed in GPR pairs,
if one is still available, or else on the stack. If only one
register is free, skip the register (it won't be used for any
subsequent argument either). */
#ifndef __s390x__
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
n_gpr += 2;
else
n_ov += 2;
break;
#endif
/* Everything else is passed in GPRs (until MAX_GPRARGS
have been used) or overflows to the stack. */
default:
if (n_gpr < MAX_GPRARGS)
n_gpr++;
else
n_ov++;
break;
}
}
/* Total stack space as required for overflow arguments
and temporary structure copies. */
cif->bytes = ROUND_SIZE (n_ov * sizeof (long)) + struct_size;
return FFI_OK;
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_call. */
/* */
/* Function - Call the FFI routine. */
/* */
/*====================================================================*/
void
ffi_call(ffi_cif *cif,
void (*fn)(void),
void *rvalue,
void **avalue)
{
int ret_type = cif->flags;
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
ecif.rvalue = rvalue;
/* If we don't have a return value, we need to fake one. */
if (rvalue == NULL)
{
if (ret_type == FFI390_RET_STRUCT)
ecif.rvalue = alloca (cif->rtype->size);
else
ret_type = FFI390_RET_VOID;
}
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (cif->bytes, &ecif, ffi_prep_args,
ret_type, ecif.rvalue, fn);
break;
default:
FFI_ASSERT (0);
break;
}
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_closure_helper_SYSV. */
/* */
/* Function - Call a FFI closure target function. */
/* */
/*====================================================================*/
void
ffi_closure_helper_SYSV (ffi_closure *closure,
unsigned long *p_gpr,
unsigned long long *p_fpr,
unsigned long *p_ov)
{
unsigned long long ret_buffer;
void *rvalue = &ret_buffer;
void **avalue;
void **p_arg;
int n_gpr = 0;
int n_fpr = 0;
int n_ov = 0;
ffi_type **ptr;
int i;
/* Allocate buffer for argument list pointers. */
p_arg = avalue = alloca (closure->cif->nargs * sizeof (void *));
/* If we returning a structure, pass the structure address
directly to the target function. Otherwise, have the target
function store the return value to the GPR save area. */
if (closure->cif->flags == FFI390_RET_STRUCT)
rvalue = (void *) p_gpr[n_gpr++];
/* Now for the arguments. */
for (ptr = closure->cif->arg_types, i = closure->cif->nargs;
i > 0;
i--, p_arg++, ptr++)
{
int deref_struct_pointer = 0;
int type = (*ptr)->type;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
/* 16-byte long double is passed like a struct. */
if (type == FFI_TYPE_LONGDOUBLE)
type = FFI_TYPE_STRUCT;
#endif
/* Check how a structure type is passed. */
if (type == FFI_TYPE_STRUCT)
{
type = ffi_check_struct_type (*ptr);
/* If we pass the struct via pointer, remember to
retrieve the pointer later. */
if (type == FFI_TYPE_POINTER)
deref_struct_pointer = 1;
}
/* Pointers are passed like UINTs of the same size. */
if (type == FFI_TYPE_POINTER)
#ifdef __s390x__
type = FFI_TYPE_UINT64;
#else
type = FFI_TYPE_UINT32;
#endif
/* Now handle all primitive int/float data types. */
switch (type)
{
case FFI_TYPE_DOUBLE:
if (n_fpr < MAX_FPRARGS)
*p_arg = &p_fpr[n_fpr++];
else
*p_arg = &p_ov[n_ov],
n_ov += sizeof (double) / sizeof (long);
break;
case FFI_TYPE_FLOAT:
if (n_fpr < MAX_FPRARGS)
*p_arg = &p_fpr[n_fpr++];
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
if (n_gpr < MAX_GPRARGS)
*p_arg = &p_gpr[n_gpr++];
else
*p_arg = &p_ov[n_ov++];
#else
if (n_gpr == MAX_GPRARGS-1)
n_gpr = MAX_GPRARGS;
if (n_gpr < MAX_GPRARGS)
*p_arg = &p_gpr[n_gpr], n_gpr += 2;
else
*p_arg = &p_ov[n_ov], n_ov += 2;
#endif
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
if (n_gpr < MAX_GPRARGS)
*p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 4;
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4;
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
if (n_gpr < MAX_GPRARGS)
*p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 2;
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 2;
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
if (n_gpr < MAX_GPRARGS)
*p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 1;
else
*p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 1;
break;
default:
FFI_ASSERT (0);
break;
}
/* If this is a struct passed via pointer, we need to
actually retrieve that pointer. */
if (deref_struct_pointer)
*p_arg = *(void **)*p_arg;
}
/* Call the target function. */
(closure->fun) (closure->cif, rvalue, avalue, closure->user_data);
/* Convert the return value. */
switch (closure->cif->rtype->type)
{
/* Void is easy, and so is struct. */
case FFI_TYPE_VOID:
case FFI_TYPE_STRUCT:
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
#endif
break;
/* Floating point values are returned in fpr 0. */
case FFI_TYPE_FLOAT:
p_fpr[0] = (long long) *(unsigned int *) rvalue << 32;
break;
case FFI_TYPE_DOUBLE:
p_fpr[0] = *(unsigned long long *) rvalue;
break;
/* Integer values are returned in gpr 2 (and gpr 3
for 64-bit values on 31-bit machines). */
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef __s390x__
p_gpr[0] = *(unsigned long *) rvalue;
#else
p_gpr[0] = ((unsigned long *) rvalue)[0],
p_gpr[1] = ((unsigned long *) rvalue)[1];
#endif
break;
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT32:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT8:
p_gpr[0] = *(unsigned long *) rvalue;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT8:
p_gpr[0] = *(signed long *) rvalue;
break;
default:
FFI_ASSERT (0);
break;
}
}
/*======================== End of Routine ============================*/
/*====================================================================*/
/* */
/* Name - ffi_prep_closure_loc. */
/* */
/* Function - Prepare a FFI closure. */
/* */
/*====================================================================*/
ffi_status
ffi_prep_closure_loc (ffi_closure *closure,
ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data,
void *codeloc)
{
FFI_ASSERT (cif->abi == FFI_SYSV);
#ifndef __s390x__
*(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */
*(short *)&closure->tramp [2] = 0x9801; /* lm %r0,%r1,6(%r1) */
*(short *)&closure->tramp [4] = 0x1006;
*(short *)&closure->tramp [6] = 0x07f1; /* br %r1 */
*(long *)&closure->tramp [8] = (long)codeloc;
*(long *)&closure->tramp[12] = (long)&ffi_closure_SYSV;
#else
*(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */
*(short *)&closure->tramp [2] = 0xeb01; /* lmg %r0,%r1,14(%r1) */
*(short *)&closure->tramp [4] = 0x100e;
*(short *)&closure->tramp [6] = 0x0004;
*(short *)&closure->tramp [8] = 0x07f1; /* br %r1 */
*(long *)&closure->tramp[16] = (long)codeloc;
*(long *)&closure->tramp[24] = (long)&ffi_closure_SYSV;
#endif
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/*======================== End of Routine ============================*/

60
src/s390/ffitarget.h Normal file
View File

@@ -0,0 +1,60 @@
/* -----------------------------------------------------------------*-C-*-
ffitarget.h - Copyright (c) 1996-2003 Red Hat, Inc.
Target configuration macros for S390.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef LIBFFI_TARGET_H
#define LIBFFI_TARGET_H
#if defined (__s390x__)
#define S390X
#endif
/* ---- System specific configurations ----------------------------------- */
#ifndef LIBFFI_ASM
typedef unsigned long ffi_arg;
typedef signed long ffi_sarg;
typedef enum ffi_abi {
FFI_FIRST_ABI = 0,
FFI_SYSV,
FFI_DEFAULT_ABI = FFI_SYSV,
FFI_LAST_ABI = FFI_DEFAULT_ABI + 1
} ffi_abi;
#endif
/* ---- Definitions for closures ----------------------------------------- */
#define FFI_CLOSURES 1
#ifdef S390X
#define FFI_TRAMPOLINE_SIZE 32
#else
#define FFI_TRAMPOLINE_SIZE 16
#endif
#define FFI_NATIVE_RAW_API 0
#endif

434
src/s390/sysv.S Normal file
View File

@@ -0,0 +1,434 @@
/* -----------------------------------------------------------------------
sysv.S - Copyright (c) 2000 Software AG
Copyright (c) 2008 Red Hat, Inc.
S390 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#ifndef __s390x__
.text
# r2: cif->bytes
# r3: &ecif
# r4: ffi_prep_args
# r5: ret_type
# r6: ecif.rvalue
# ov: fn
# This assumes we are using gas.
.globl ffi_call_SYSV
.type ffi_call_SYSV,%function
ffi_call_SYSV:
.LFB1:
stm %r6,%r15,24(%r15) # Save registers
.LCFI0:
basr %r13,0 # Set up base register
.Lbase:
lr %r11,%r15 # Set up frame pointer
.LCFI1:
sr %r15,%r2
ahi %r15,-96-48 # Allocate stack
lr %r8,%r6 # Save ecif.rvalue
sr %r9,%r9
ic %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address
l %r7,96(%r11) # Load function address
st %r11,0(%r15) # Set up back chain
ahi %r11,-48 # Register save area
.LCFI2:
la %r2,96(%r15) # Save area
# r3 already holds &ecif
basr %r14,%r4 # Call ffi_prep_args
lm %r2,%r6,0(%r11) # Load arguments
ld %f0,32(%r11)
ld %f2,40(%r11)
la %r14,0(%r13,%r9) # Set return address
br %r7 # ... and call function
.LretNone: # Return void
l %r4,48+56(%r11)
lm %r6,%r15,48+24(%r11)
br %r4
.LretFloat:
l %r4,48+56(%r11)
ste %f0,0(%r8) # Return float
lm %r6,%r15,48+24(%r11)
br %r4
.LretDouble:
l %r4,48+56(%r11)
std %f0,0(%r8) # Return double
lm %r6,%r15,48+24(%r11)
br %r4
.LretInt32:
l %r4,48+56(%r11)
st %r2,0(%r8) # Return int
lm %r6,%r15,48+24(%r11)
br %r4
.LretInt64:
l %r4,48+56(%r11)
stm %r2,%r3,0(%r8) # Return long long
lm %r6,%r15,48+24(%r11)
br %r4
.Ltable:
.byte .LretNone-.Lbase # FFI390_RET_VOID
.byte .LretNone-.Lbase # FFI390_RET_STRUCT
.byte .LretFloat-.Lbase # FFI390_RET_FLOAT
.byte .LretDouble-.Lbase # FFI390_RET_DOUBLE
.byte .LretInt32-.Lbase # FFI390_RET_INT32
.byte .LretInt64-.Lbase # FFI390_RET_INT64
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.globl ffi_closure_SYSV
.type ffi_closure_SYSV,%function
ffi_closure_SYSV:
.LFB2:
stm %r12,%r15,48(%r15) # Save registers
.LCFI10:
basr %r13,0 # Set up base register
.Lcbase:
stm %r2,%r6,8(%r15) # Save arguments
std %f0,64(%r15)
std %f2,72(%r15)
lr %r1,%r15 # Set up stack frame
ahi %r15,-96
.LCFI11:
l %r12,.Lchelper-.Lcbase(%r13) # Get helper function
lr %r2,%r0 # Closure
la %r3,8(%r1) # GPRs
la %r4,64(%r1) # FPRs
la %r5,96(%r1) # Overflow
st %r1,0(%r15) # Set up back chain
bas %r14,0(%r12,%r13) # Call helper
l %r4,96+56(%r15)
ld %f0,96+64(%r15) # Load return registers
lm %r2,%r3,96+8(%r15)
lm %r12,%r15,96+48(%r15)
br %r4
.align 4
.Lchelper:
.long ffi_closure_helper_SYSV-.Lcbase
.LFE2:
.ffi_closure_SYSV_end:
.size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.4byte .LECIE1-.LSCIE1 # Length of Common Information Entry
.LSCIE1:
.4byte 0x0 # CIE Identifier Tag
.byte 0x1 # CIE Version
.ascii "zR\0" # CIE Augmentation
.uleb128 0x1 # CIE Code Alignment Factor
.sleb128 -4 # CIE Data Alignment Factor
.byte 0xe # CIE RA Column
.uleb128 0x1 # Augmentation size
.byte 0x1b # FDE Encoding (pcrel sdata4)
.byte 0xc # DW_CFA_def_cfa
.uleb128 0xf
.uleb128 0x60
.align 4
.LECIE1:
.LSFDE1:
.4byte .LEFDE1-.LASFDE1 # FDE Length
.LASFDE1:
.4byte .LASFDE1-.Lframe1 # FDE CIE offset
.4byte .LFB1-. # FDE initial location
.4byte .LFE1-.LFB1 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI0-.LFB1
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x9
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0xa
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0xb
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0xc
.byte 0x8b # DW_CFA_offset, column 0xb
.uleb128 0xd
.byte 0x8a # DW_CFA_offset, column 0xa
.uleb128 0xe
.byte 0x89 # DW_CFA_offset, column 0x9
.uleb128 0xf
.byte 0x88 # DW_CFA_offset, column 0x8
.uleb128 0x10
.byte 0x87 # DW_CFA_offset, column 0x7
.uleb128 0x11
.byte 0x86 # DW_CFA_offset, column 0x6
.uleb128 0x12
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI1-.LCFI0
.byte 0xd # DW_CFA_def_cfa_register
.uleb128 0xb
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI2-.LCFI1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0x90
.align 4
.LEFDE1:
.LSFDE2:
.4byte .LEFDE2-.LASFDE2 # FDE Length
.LASFDE2:
.4byte .LASFDE2-.Lframe1 # FDE CIE offset
.4byte .LFB2-. # FDE initial location
.4byte .LFE2-.LFB2 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI10-.LFB2
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x9
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0xa
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0xb
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0xc
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI11-.LCFI10
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0xc0
.align 4
.LEFDE2:
#else
.text
# r2: cif->bytes
# r3: &ecif
# r4: ffi_prep_args
# r5: ret_type
# r6: ecif.rvalue
# ov: fn
# This assumes we are using gas.
.globl ffi_call_SYSV
.type ffi_call_SYSV,%function
ffi_call_SYSV:
.LFB1:
stmg %r6,%r15,48(%r15) # Save registers
.LCFI0:
larl %r13,.Lbase # Set up base register
lgr %r11,%r15 # Set up frame pointer
.LCFI1:
sgr %r15,%r2
aghi %r15,-160-80 # Allocate stack
lgr %r8,%r6 # Save ecif.rvalue
llgc %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address
lg %r7,160(%r11) # Load function address
stg %r11,0(%r15) # Set up back chain
aghi %r11,-80 # Register save area
.LCFI2:
la %r2,160(%r15) # Save area
# r3 already holds &ecif
basr %r14,%r4 # Call ffi_prep_args
lmg %r2,%r6,0(%r11) # Load arguments
ld %f0,48(%r11)
ld %f2,56(%r11)
ld %f4,64(%r11)
ld %f6,72(%r11)
la %r14,0(%r13,%r9) # Set return address
br %r7 # ... and call function
.Lbase:
.LretNone: # Return void
lg %r4,80+112(%r11)
lmg %r6,%r15,80+48(%r11)
br %r4
.LretFloat:
lg %r4,80+112(%r11)
ste %f0,0(%r8) # Return float
lmg %r6,%r15,80+48(%r11)
br %r4
.LretDouble:
lg %r4,80+112(%r11)
std %f0,0(%r8) # Return double
lmg %r6,%r15,80+48(%r11)
br %r4
.LretInt32:
lg %r4,80+112(%r11)
st %r2,0(%r8) # Return int
lmg %r6,%r15,80+48(%r11)
br %r4
.LretInt64:
lg %r4,80+112(%r11)
stg %r2,0(%r8) # Return long
lmg %r6,%r15,80+48(%r11)
br %r4
.Ltable:
.byte .LretNone-.Lbase # FFI390_RET_VOID
.byte .LretNone-.Lbase # FFI390_RET_STRUCT
.byte .LretFloat-.Lbase # FFI390_RET_FLOAT
.byte .LretDouble-.Lbase # FFI390_RET_DOUBLE
.byte .LretInt32-.Lbase # FFI390_RET_INT32
.byte .LretInt64-.Lbase # FFI390_RET_INT64
.LFE1:
.ffi_call_SYSV_end:
.size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV
.globl ffi_closure_SYSV
.type ffi_closure_SYSV,%function
ffi_closure_SYSV:
.LFB2:
stmg %r14,%r15,112(%r15) # Save registers
.LCFI10:
stmg %r2,%r6,16(%r15) # Save arguments
std %f0,128(%r15)
std %f2,136(%r15)
std %f4,144(%r15)
std %f6,152(%r15)
lgr %r1,%r15 # Set up stack frame
aghi %r15,-160
.LCFI11:
lgr %r2,%r0 # Closure
la %r3,16(%r1) # GPRs
la %r4,128(%r1) # FPRs
la %r5,160(%r1) # Overflow
stg %r1,0(%r15) # Set up back chain
brasl %r14,ffi_closure_helper_SYSV # Call helper
lg %r14,160+112(%r15)
ld %f0,160+128(%r15) # Load return registers
lg %r2,160+16(%r15)
la %r15,160(%r15)
br %r14
.LFE2:
.ffi_closure_SYSV_end:
.size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV
.section .eh_frame,EH_FRAME_FLAGS,@progbits
.Lframe1:
.4byte .LECIE1-.LSCIE1 # Length of Common Information Entry
.LSCIE1:
.4byte 0x0 # CIE Identifier Tag
.byte 0x1 # CIE Version
.ascii "zR\0" # CIE Augmentation
.uleb128 0x1 # CIE Code Alignment Factor
.sleb128 -8 # CIE Data Alignment Factor
.byte 0xe # CIE RA Column
.uleb128 0x1 # Augmentation size
.byte 0x1b # FDE Encoding (pcrel sdata4)
.byte 0xc # DW_CFA_def_cfa
.uleb128 0xf
.uleb128 0xa0
.align 8
.LECIE1:
.LSFDE1:
.4byte .LEFDE1-.LASFDE1 # FDE Length
.LASFDE1:
.4byte .LASFDE1-.Lframe1 # FDE CIE offset
.4byte .LFB1-. # FDE initial location
.4byte .LFE1-.LFB1 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI0-.LFB1
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x5
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0x6
.byte 0x8d # DW_CFA_offset, column 0xd
.uleb128 0x7
.byte 0x8c # DW_CFA_offset, column 0xc
.uleb128 0x8
.byte 0x8b # DW_CFA_offset, column 0xb
.uleb128 0x9
.byte 0x8a # DW_CFA_offset, column 0xa
.uleb128 0xa
.byte 0x89 # DW_CFA_offset, column 0x9
.uleb128 0xb
.byte 0x88 # DW_CFA_offset, column 0x8
.uleb128 0xc
.byte 0x87 # DW_CFA_offset, column 0x7
.uleb128 0xd
.byte 0x86 # DW_CFA_offset, column 0x6
.uleb128 0xe
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI1-.LCFI0
.byte 0xd # DW_CFA_def_cfa_register
.uleb128 0xb
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI2-.LCFI1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0xf0
.align 8
.LEFDE1:
.LSFDE2:
.4byte .LEFDE2-.LASFDE2 # FDE Length
.LASFDE2:
.4byte .LASFDE2-.Lframe1 # FDE CIE offset
.4byte .LFB2-. # FDE initial location
.4byte .LFE2-.LFB2 # FDE address range
.uleb128 0x0 # Augmentation size
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI10-.LFB2
.byte 0x8f # DW_CFA_offset, column 0xf
.uleb128 0x5
.byte 0x8e # DW_CFA_offset, column 0xe
.uleb128 0x6
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI11-.LCFI10
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 0x140
.align 8
.LEFDE2:
#endif
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits
#endif