Pulled in libffi from gcc trunk.
Fixed build and install for standalone use.
This commit is contained in:
648
libffi/src/mips/ffi.c
Normal file
648
libffi/src/mips/ffi.c
Normal file
@@ -0,0 +1,648 @@
|
||||
/* -----------------------------------------------------------------------
|
||||
ffi.c - Copyright (c) 1996 Red Hat, Inc.
|
||||
|
||||
MIPS Foreign Function Interface
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
``Software''), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
OTHER DEALINGS IN THE SOFTWARE.
|
||||
----------------------------------------------------------------------- */
|
||||
|
||||
#include <ffi.h>
|
||||
#include <ffi_common.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <sys/cachectl.h>
|
||||
|
||||
#if _MIPS_SIM == _ABIN32
|
||||
#define FIX_ARGP \
|
||||
FFI_ASSERT(argp <= &stack[bytes]); \
|
||||
if (argp == &stack[bytes]) \
|
||||
{ \
|
||||
argp = stack; \
|
||||
ffi_stop_here(); \
|
||||
}
|
||||
#else
|
||||
#define FIX_ARGP
|
||||
#endif
|
||||
|
||||
|
||||
/* ffi_prep_args is called by the assembly routine once stack space
|
||||
has been allocated for the function's arguments */
|
||||
|
||||
static void ffi_prep_args(char *stack,
|
||||
extended_cif *ecif,
|
||||
int bytes,
|
||||
int flags)
|
||||
{
|
||||
int i;
|
||||
void **p_argv;
|
||||
char *argp;
|
||||
ffi_type **p_arg;
|
||||
|
||||
#if _MIPS_SIM == _ABIN32
|
||||
/* If more than 8 double words are used, the remainder go
|
||||
on the stack. We reorder stuff on the stack here to
|
||||
support this easily. */
|
||||
if (bytes > 8 * sizeof(ffi_arg))
|
||||
argp = &stack[bytes - (8 * sizeof(ffi_arg))];
|
||||
else
|
||||
argp = stack;
|
||||
#else
|
||||
argp = stack;
|
||||
#endif
|
||||
|
||||
memset(stack, 0, bytes);
|
||||
|
||||
#if _MIPS_SIM == _ABIN32
|
||||
if ( ecif->cif->rstruct_flag != 0 )
|
||||
#else
|
||||
if ( ecif->cif->rtype->type == FFI_TYPE_STRUCT )
|
||||
#endif
|
||||
{
|
||||
*(ffi_arg *) argp = (ffi_arg) ecif->rvalue;
|
||||
argp += sizeof(ffi_arg);
|
||||
FIX_ARGP;
|
||||
}
|
||||
|
||||
p_argv = ecif->avalue;
|
||||
|
||||
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types; i; i--, p_arg++)
|
||||
{
|
||||
size_t z;
|
||||
unsigned int a;
|
||||
|
||||
/* Align if necessary. */
|
||||
a = (*p_arg)->alignment;
|
||||
if (a < sizeof(ffi_arg))
|
||||
a = sizeof(ffi_arg);
|
||||
|
||||
if ((a - 1) & (unsigned int) argp)
|
||||
{
|
||||
argp = (char *) ALIGN(argp, a);
|
||||
FIX_ARGP;
|
||||
}
|
||||
|
||||
z = (*p_arg)->size;
|
||||
if (z <= sizeof(ffi_arg))
|
||||
{
|
||||
z = sizeof(ffi_arg);
|
||||
|
||||
switch ((*p_arg)->type)
|
||||
{
|
||||
case FFI_TYPE_SINT8:
|
||||
*(ffi_arg *)argp = *(SINT8 *)(* p_argv);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_UINT8:
|
||||
*(ffi_arg *)argp = *(UINT8 *)(* p_argv);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_SINT16:
|
||||
*(ffi_arg *)argp = *(SINT16 *)(* p_argv);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_UINT16:
|
||||
*(ffi_arg *)argp = *(UINT16 *)(* p_argv);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_SINT32:
|
||||
*(ffi_arg *)argp = *(SINT32 *)(* p_argv);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_UINT32:
|
||||
case FFI_TYPE_POINTER:
|
||||
*(ffi_arg *)argp = *(UINT32 *)(* p_argv);
|
||||
break;
|
||||
|
||||
/* This can only happen with 64bit slots. */
|
||||
case FFI_TYPE_FLOAT:
|
||||
*(float *) argp = *(float *)(* p_argv);
|
||||
break;
|
||||
|
||||
/* Handle small structures. */
|
||||
case FFI_TYPE_STRUCT:
|
||||
default:
|
||||
memcpy(argp, *p_argv, (*p_arg)->size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
#if _MIPS_SIM == _ABIO32
|
||||
memcpy(argp, *p_argv, z);
|
||||
#else
|
||||
{
|
||||
unsigned end = (unsigned) argp+z;
|
||||
unsigned cap = (unsigned) stack+bytes;
|
||||
|
||||
/* Check if the data will fit within the register space.
|
||||
Handle it if it doesn't. */
|
||||
|
||||
if (end <= cap)
|
||||
memcpy(argp, *p_argv, z);
|
||||
else
|
||||
{
|
||||
unsigned portion = end - cap;
|
||||
|
||||
memcpy(argp, *p_argv, portion);
|
||||
argp = stack;
|
||||
memcpy(argp,
|
||||
(void*)((unsigned)(*p_argv)+portion), z - portion);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
p_argv++;
|
||||
argp += z;
|
||||
FIX_ARGP;
|
||||
}
|
||||
}
|
||||
|
||||
#if _MIPS_SIM == _ABIN32
|
||||
|
||||
/* The n32 spec says that if "a chunk consists solely of a double
|
||||
float field (but not a double, which is part of a union), it
|
||||
is passed in a floating point register. Any other chunk is
|
||||
passed in an integer register". This code traverses structure
|
||||
definitions and generates the appropriate flags. */
|
||||
|
||||
unsigned calc_n32_struct_flags(ffi_type *arg, unsigned *shift)
|
||||
{
|
||||
unsigned flags = 0;
|
||||
unsigned index = 0;
|
||||
|
||||
ffi_type *e;
|
||||
|
||||
while (e = arg->elements[index])
|
||||
{
|
||||
if (e->type == FFI_TYPE_DOUBLE)
|
||||
{
|
||||
flags += (FFI_TYPE_DOUBLE << *shift);
|
||||
*shift += FFI_FLAG_BITS;
|
||||
}
|
||||
else if (e->type == FFI_TYPE_STRUCT)
|
||||
flags += calc_n32_struct_flags(e, shift);
|
||||
else
|
||||
*shift += FFI_FLAG_BITS;
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
return flags;
|
||||
}
|
||||
|
||||
unsigned calc_n32_return_struct_flags(ffi_type *arg)
|
||||
{
|
||||
unsigned flags = 0;
|
||||
unsigned index = 0;
|
||||
unsigned small = FFI_TYPE_SMALLSTRUCT;
|
||||
ffi_type *e;
|
||||
|
||||
/* Returning structures under n32 is a tricky thing.
|
||||
A struct with only one or two floating point fields
|
||||
is returned in $f0 (and $f2 if necessary). Any other
|
||||
struct results at most 128 bits are returned in $2
|
||||
(the first 64 bits) and $3 (remainder, if necessary).
|
||||
Larger structs are handled normally. */
|
||||
|
||||
if (arg->size > 16)
|
||||
return 0;
|
||||
|
||||
if (arg->size > 8)
|
||||
small = FFI_TYPE_SMALLSTRUCT2;
|
||||
|
||||
e = arg->elements[0];
|
||||
if (e->type == FFI_TYPE_DOUBLE)
|
||||
flags = FFI_TYPE_DOUBLE << FFI_FLAG_BITS;
|
||||
else if (e->type == FFI_TYPE_FLOAT)
|
||||
flags = FFI_TYPE_FLOAT << FFI_FLAG_BITS;
|
||||
|
||||
if (flags && (e = arg->elements[1]))
|
||||
{
|
||||
if (e->type == FFI_TYPE_DOUBLE)
|
||||
flags += FFI_TYPE_DOUBLE;
|
||||
else if (e->type == FFI_TYPE_FLOAT)
|
||||
flags += FFI_TYPE_FLOAT;
|
||||
else
|
||||
return small;
|
||||
|
||||
if (flags && (arg->elements[2]))
|
||||
{
|
||||
/* There are three arguments and the first two are
|
||||
floats! This must be passed the old way. */
|
||||
return small;
|
||||
}
|
||||
}
|
||||
else
|
||||
if (!flags)
|
||||
return small;
|
||||
|
||||
return flags;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* Perform machine dependent cif processing */
|
||||
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
|
||||
{
|
||||
cif->flags = 0;
|
||||
|
||||
#if _MIPS_SIM == _ABIO32
|
||||
/* Set the flags necessary for O32 processing. FFI_O32_SOFT_FLOAT
|
||||
* does not have special handling for floating point args.
|
||||
*/
|
||||
|
||||
if (cif->rtype->type != FFI_TYPE_STRUCT && cif->abi == FFI_O32)
|
||||
{
|
||||
if (cif->nargs > 0)
|
||||
{
|
||||
switch ((cif->arg_types)[0]->type)
|
||||
{
|
||||
case FFI_TYPE_FLOAT:
|
||||
case FFI_TYPE_DOUBLE:
|
||||
cif->flags += (cif->arg_types)[0]->type;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (cif->nargs > 1)
|
||||
{
|
||||
/* Only handle the second argument if the first
|
||||
is a float or double. */
|
||||
if (cif->flags)
|
||||
{
|
||||
switch ((cif->arg_types)[1]->type)
|
||||
{
|
||||
case FFI_TYPE_FLOAT:
|
||||
case FFI_TYPE_DOUBLE:
|
||||
cif->flags += (cif->arg_types)[1]->type << FFI_FLAG_BITS;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Set the return type flag */
|
||||
|
||||
if (cif->abi == FFI_O32_SOFT_FLOAT)
|
||||
{
|
||||
switch (cif->rtype->type)
|
||||
{
|
||||
case FFI_TYPE_VOID:
|
||||
case FFI_TYPE_STRUCT:
|
||||
cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 2);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_SINT64:
|
||||
case FFI_TYPE_UINT64:
|
||||
case FFI_TYPE_DOUBLE:
|
||||
cif->flags += FFI_TYPE_UINT64 << (FFI_FLAG_BITS * 2);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_FLOAT:
|
||||
default:
|
||||
cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 2);
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* FFI_O32 */
|
||||
switch (cif->rtype->type)
|
||||
{
|
||||
case FFI_TYPE_VOID:
|
||||
case FFI_TYPE_STRUCT:
|
||||
case FFI_TYPE_FLOAT:
|
||||
case FFI_TYPE_DOUBLE:
|
||||
cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 2);
|
||||
break;
|
||||
|
||||
case FFI_TYPE_SINT64:
|
||||
case FFI_TYPE_UINT64:
|
||||
cif->flags += FFI_TYPE_UINT64 << (FFI_FLAG_BITS * 2);
|
||||
break;
|
||||
|
||||
default:
|
||||
cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 2);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if _MIPS_SIM == _ABIN32
|
||||
/* Set the flags necessary for N32 processing */
|
||||
{
|
||||
unsigned shift = 0;
|
||||
unsigned count = (cif->nargs < 8) ? cif->nargs : 8;
|
||||
unsigned index = 0;
|
||||
|
||||
unsigned struct_flags = 0;
|
||||
|
||||
if (cif->rtype->type == FFI_TYPE_STRUCT)
|
||||
{
|
||||
struct_flags = calc_n32_return_struct_flags(cif->rtype);
|
||||
|
||||
if (struct_flags == 0)
|
||||
{
|
||||
/* This means that the structure is being passed as
|
||||
a hidden argument */
|
||||
|
||||
shift = FFI_FLAG_BITS;
|
||||
count = (cif->nargs < 7) ? cif->nargs : 7;
|
||||
|
||||
cif->rstruct_flag = !0;
|
||||
}
|
||||
else
|
||||
cif->rstruct_flag = 0;
|
||||
}
|
||||
else
|
||||
cif->rstruct_flag = 0;
|
||||
|
||||
while (count-- > 0)
|
||||
{
|
||||
switch ((cif->arg_types)[index]->type)
|
||||
{
|
||||
case FFI_TYPE_FLOAT:
|
||||
case FFI_TYPE_DOUBLE:
|
||||
cif->flags += ((cif->arg_types)[index]->type << shift);
|
||||
shift += FFI_FLAG_BITS;
|
||||
break;
|
||||
|
||||
case FFI_TYPE_STRUCT:
|
||||
cif->flags += calc_n32_struct_flags((cif->arg_types)[index],
|
||||
&shift);
|
||||
break;
|
||||
|
||||
default:
|
||||
shift += FFI_FLAG_BITS;
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
/* Set the return type flag */
|
||||
switch (cif->rtype->type)
|
||||
{
|
||||
case FFI_TYPE_STRUCT:
|
||||
{
|
||||
if (struct_flags == 0)
|
||||
{
|
||||
/* The structure is returned through a hidden
|
||||
first argument. Do nothing, 'cause FFI_TYPE_VOID
|
||||
is 0 */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The structure is returned via some tricky
|
||||
mechanism */
|
||||
cif->flags += FFI_TYPE_STRUCT << (FFI_FLAG_BITS * 8);
|
||||
cif->flags += struct_flags << (4 + (FFI_FLAG_BITS * 8));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case FFI_TYPE_VOID:
|
||||
/* Do nothing, 'cause FFI_TYPE_VOID is 0 */
|
||||
break;
|
||||
|
||||
case FFI_TYPE_FLOAT:
|
||||
case FFI_TYPE_DOUBLE:
|
||||
cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 8);
|
||||
break;
|
||||
|
||||
default:
|
||||
cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 8);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return FFI_OK;
|
||||
}
|
||||
|
||||
/* Low level routine for calling O32 functions */
|
||||
extern int ffi_call_O32(void (*)(char *, extended_cif *, int, int),
|
||||
extended_cif *, unsigned,
|
||||
unsigned, unsigned *, void (*)());
|
||||
|
||||
/* Low level routine for calling N32 functions */
|
||||
extern int ffi_call_N32(void (*)(char *, extended_cif *, int, int),
|
||||
extended_cif *, unsigned,
|
||||
unsigned, unsigned *, void (*)());
|
||||
|
||||
void ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
|
||||
{
|
||||
extended_cif ecif;
|
||||
|
||||
ecif.cif = cif;
|
||||
ecif.avalue = avalue;
|
||||
|
||||
/* If the return value is a struct and we don't have a return */
|
||||
/* value address then we need to make one */
|
||||
|
||||
if ((rvalue == NULL) &&
|
||||
(cif->rtype->type == FFI_TYPE_STRUCT))
|
||||
ecif.rvalue = alloca(cif->rtype->size);
|
||||
else
|
||||
ecif.rvalue = rvalue;
|
||||
|
||||
switch (cif->abi)
|
||||
{
|
||||
#if _MIPS_SIM == _ABIO32
|
||||
case FFI_O32:
|
||||
case FFI_O32_SOFT_FLOAT:
|
||||
ffi_call_O32(ffi_prep_args, &ecif, cif->bytes,
|
||||
cif->flags, ecif.rvalue, fn);
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if _MIPS_SIM == _ABIN32
|
||||
case FFI_N32:
|
||||
ffi_call_N32(ffi_prep_args, &ecif, cif->bytes,
|
||||
cif->flags, ecif.rvalue, fn);
|
||||
break;
|
||||
#endif
|
||||
|
||||
default:
|
||||
FFI_ASSERT(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#if FFI_CLOSURES /* N32 not implemented yet, FFI_CLOSURES not defined */
|
||||
#if defined(FFI_MIPS_O32)
|
||||
extern void ffi_closure_O32(void);
|
||||
#endif /* FFI_MIPS_O32 */
|
||||
|
||||
ffi_status
|
||||
ffi_prep_closure (ffi_closure *closure,
|
||||
ffi_cif *cif,
|
||||
void (*fun)(ffi_cif*,void*,void**,void*),
|
||||
void *user_data)
|
||||
{
|
||||
unsigned int *tramp = (unsigned int *) &closure->tramp[0];
|
||||
unsigned int fn;
|
||||
unsigned int ctx = (unsigned int) closure;
|
||||
|
||||
#if defined(FFI_MIPS_O32)
|
||||
FFI_ASSERT(cif->abi == FFI_O32 || cif->abi == FFI_O32_SOFT_FLOAT);
|
||||
fn = (unsigned int) ffi_closure_O32;
|
||||
#else /* FFI_MIPS_N32 */
|
||||
FFI_ASSERT(cif->abi == FFI_N32);
|
||||
FFI_ASSERT(!"not implemented");
|
||||
#endif /* FFI_MIPS_O32 */
|
||||
|
||||
tramp[0] = 0x3c190000 | (fn >> 16); /* lui $25,high(fn) */
|
||||
tramp[1] = 0x37390000 | (fn & 0xffff); /* ori $25,low(fn) */
|
||||
tramp[2] = 0x3c080000 | (ctx >> 16); /* lui $8,high(ctx) */
|
||||
tramp[3] = 0x03200008; /* jr $25 */
|
||||
tramp[4] = 0x35080000 | (ctx & 0xffff); /* ori $8,low(ctx) */
|
||||
|
||||
closure->cif = cif;
|
||||
closure->fun = fun;
|
||||
closure->user_data = user_data;
|
||||
|
||||
/* XXX this is available on Linux, but anything else? */
|
||||
cacheflush (tramp, FFI_TRAMPOLINE_SIZE, ICACHE);
|
||||
|
||||
return FFI_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decodes the arguments to a function, which will be stored on the
|
||||
* stack. AR is the pointer to the beginning of the integer arguments
|
||||
* (and, depending upon the arguments, some floating-point arguments
|
||||
* as well). FPR is a pointer to the area where floating point
|
||||
* registers have been saved, if any.
|
||||
*
|
||||
* RVALUE is the location where the function return value will be
|
||||
* stored. CLOSURE is the prepared closure to invoke.
|
||||
*
|
||||
* This function should only be called from assembly, which is in
|
||||
* turn called from a trampoline.
|
||||
*
|
||||
* Returns the function return type.
|
||||
*
|
||||
* Based on the similar routine for sparc.
|
||||
*/
|
||||
int
|
||||
ffi_closure_mips_inner_O32 (ffi_closure *closure,
|
||||
void *rvalue, ffi_arg *ar,
|
||||
double *fpr)
|
||||
{
|
||||
ffi_cif *cif;
|
||||
void **avaluep;
|
||||
ffi_arg *avalue;
|
||||
ffi_type **arg_types;
|
||||
int i, avn, argn, seen_int;
|
||||
|
||||
cif = closure->cif;
|
||||
avalue = alloca (cif->nargs * sizeof (ffi_arg));
|
||||
avaluep = alloca (cif->nargs * sizeof (ffi_arg));
|
||||
|
||||
seen_int = (cif->abi == FFI_O32_SOFT_FLOAT);
|
||||
argn = 0;
|
||||
|
||||
if ((cif->flags >> (FFI_FLAG_BITS * 2)) == FFI_TYPE_STRUCT)
|
||||
{
|
||||
rvalue = (void *) ar[0];
|
||||
argn = 1;
|
||||
}
|
||||
|
||||
i = 0;
|
||||
avn = cif->nargs;
|
||||
arg_types = cif->arg_types;
|
||||
|
||||
while (i < avn)
|
||||
{
|
||||
if (i < 2 && !seen_int &&
|
||||
(arg_types[i]->type == FFI_TYPE_FLOAT ||
|
||||
arg_types[i]->type == FFI_TYPE_DOUBLE))
|
||||
{
|
||||
#ifdef __MIPSEB__
|
||||
if (arg_types[i]->type == FFI_TYPE_FLOAT)
|
||||
avaluep[i] = ((char *) &fpr[i]) + sizeof (float);
|
||||
else
|
||||
#endif
|
||||
avaluep[i] = (char *) &fpr[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
if (arg_types[i]->alignment == 8 && (argn & 0x1))
|
||||
argn++;
|
||||
switch (arg_types[i]->type)
|
||||
{
|
||||
case FFI_TYPE_SINT8:
|
||||
avaluep[i] = &avalue[i];
|
||||
*(SINT8 *) &avalue[i] = (SINT8) ar[argn];
|
||||
break;
|
||||
|
||||
case FFI_TYPE_UINT8:
|
||||
avaluep[i] = &avalue[i];
|
||||
*(UINT8 *) &avalue[i] = (UINT8) ar[argn];
|
||||
break;
|
||||
|
||||
case FFI_TYPE_SINT16:
|
||||
avaluep[i] = &avalue[i];
|
||||
*(SINT16 *) &avalue[i] = (SINT16) ar[argn];
|
||||
break;
|
||||
|
||||
case FFI_TYPE_UINT16:
|
||||
avaluep[i] = &avalue[i];
|
||||
*(UINT16 *) &avalue[i] = (UINT16) ar[argn];
|
||||
break;
|
||||
|
||||
default:
|
||||
avaluep[i] = (char *) &ar[argn];
|
||||
break;
|
||||
}
|
||||
seen_int = 1;
|
||||
}
|
||||
argn += ALIGN(arg_types[i]->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
|
||||
i++;
|
||||
}
|
||||
|
||||
/* Invoke the closure. */
|
||||
(closure->fun) (cif, rvalue, avaluep, closure->user_data);
|
||||
|
||||
if (cif->abi == FFI_O32_SOFT_FLOAT)
|
||||
{
|
||||
switch (cif->rtype->type)
|
||||
{
|
||||
case FFI_TYPE_FLOAT:
|
||||
return FFI_TYPE_INT;
|
||||
case FFI_TYPE_DOUBLE:
|
||||
return FFI_TYPE_UINT64;
|
||||
default:
|
||||
return cif->rtype->type;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return cif->rtype->type;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* FFI_CLOSURES */
|
||||
Reference in New Issue
Block a user