Remove warnings and add OS/2 support

This commit is contained in:
Anthony Green
2010-04-13 10:19:28 -04:00
parent c0b69e57d5
commit f2c2a4fce9
32 changed files with 39835 additions and 42 deletions

View File

@@ -0,0 +1,928 @@
/* -----------------------------------------------------------------------
ffi_darwin.c
Copyright (C) 1998 Geoffrey Keating
Copyright (C) 2001 John Hornkvist
Copyright (C) 2002, 2006, 2007, 2009 Free Software Foundation, Inc.
FFI support for Darwin and AIX.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
extern void ffi_closure_ASM (void);
enum {
/* The assembly depends on these exact flags. */
FLAG_RETURNS_NOTHING = 1 << (31-30), /* These go in cr7 */
FLAG_RETURNS_FP = 1 << (31-29),
FLAG_RETURNS_64BITS = 1 << (31-28),
FLAG_RETURNS_128BITS = 1 << (31-31),
FLAG_ARG_NEEDS_COPY = 1 << (31- 7),
FLAG_FP_ARGUMENTS = 1 << (31- 6), /* cr1.eq; specified by ABI */
FLAG_4_GPR_ARGUMENTS = 1 << (31- 5),
FLAG_RETVAL_REFERENCE = 1 << (31- 4)
};
/* About the DARWIN ABI. */
enum {
NUM_GPR_ARG_REGISTERS = 8,
NUM_FPR_ARG_REGISTERS = 13
};
enum { ASM_NEEDS_REGISTERS = 4 };
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments.
The stack layout we want looks like this:
| Return address from ffi_call_DARWIN | higher addresses
|--------------------------------------------|
| Previous backchain pointer 4 | stack pointer here
|--------------------------------------------|<+ <<< on entry to
| Saved r28-r31 4*4 | | ffi_call_DARWIN
|--------------------------------------------| |
| Parameters (at least 8*4=32) | |
|--------------------------------------------| |
| Space for GPR2 4 | |
|--------------------------------------------| | stack |
| Reserved 2*4 | | grows |
|--------------------------------------------| | down V
| Space for callee's LR 4 | |
|--------------------------------------------| | lower addresses
| Saved CR 4 | |
|--------------------------------------------| | stack pointer here
| Current backchain pointer 4 |-/ during
|--------------------------------------------| <<< ffi_call_DARWIN
*/
void
ffi_prep_args (extended_cif *ecif, unsigned long *const stack)
{
const unsigned bytes = ecif->cif->bytes;
const unsigned flags = ecif->cif->flags;
const unsigned nargs = ecif->cif->nargs;
const ffi_abi abi = ecif->cif->abi;
/* 'stacktop' points at the previous backchain pointer. */
unsigned long *const stacktop = stack + (bytes / sizeof(unsigned long));
/* 'fpr_base' points at the space for fpr1, and grows upwards as
we use FPR registers. */
double *fpr_base = (double *) (stacktop - ASM_NEEDS_REGISTERS) - NUM_FPR_ARG_REGISTERS;
int fparg_count = 0;
/* 'next_arg' grows up as we put parameters in it. */
unsigned long *next_arg = stack + 6; /* 6 reserved positions. */
int i;
double double_tmp;
void **p_argv = ecif->avalue;
unsigned long gprvalue;
ffi_type** ptr = ecif->cif->arg_types;
char *dest_cpy;
unsigned size_al = 0;
/* Check that everything starts aligned properly. */
FFI_ASSERT(((unsigned) (char *) stack & 0xF) == 0);
FFI_ASSERT(((unsigned) (char *) stacktop & 0xF) == 0);
FFI_ASSERT((bytes & 0xF) == 0);
/* Deal with return values that are actually pass-by-reference.
Rule:
Return values are referenced by r3, so r4 is the first parameter. */
if (flags & FLAG_RETVAL_REFERENCE)
*next_arg++ = (unsigned long) (char *) ecif->rvalue;
/* Now for the arguments. */
for (i = nargs; i > 0; i--, ptr++, p_argv++)
{
switch ((*ptr)->type)
{
/* If a floating-point parameter appears before all of the general-
purpose registers are filled, the corresponding GPRs that match
the size of the floating-point parameter are skipped. */
case FFI_TYPE_FLOAT:
double_tmp = *(float *) *p_argv;
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
*(double *)next_arg = double_tmp;
else
*fpr_base++ = double_tmp;
next_arg++;
fparg_count++;
FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
break;
case FFI_TYPE_DOUBLE:
double_tmp = *(double *) *p_argv;
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
*(double *)next_arg = double_tmp;
else
*fpr_base++ = double_tmp;
#ifdef POWERPC64
next_arg++;
#else
next_arg += 2;
#endif
fparg_count++;
FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
break;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
#ifdef POWERPC64
if (fparg_count < NUM_FPR_ARG_REGISTERS)
*(long double *) fpr_base++ = *(long double *) *p_argv;
else
*(long double *) next_arg = *(long double *) *p_argv;
next_arg += 2;
fparg_count += 2;
#else
double_tmp = ((double *) *p_argv)[0];
if (fparg_count < NUM_FPR_ARG_REGISTERS)
*fpr_base++ = double_tmp;
else
*(double *) next_arg = double_tmp;
next_arg += 2;
fparg_count++;
double_tmp = ((double *) *p_argv)[1];
if (fparg_count < NUM_FPR_ARG_REGISTERS)
*fpr_base++ = double_tmp;
else
*(double *) next_arg = double_tmp;
next_arg += 2;
fparg_count++;
#endif
FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
break;
#endif
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef POWERPC64
gprvalue = *(long long *) *p_argv;
goto putgpr;
#else
*(long long *) next_arg = *(long long *) *p_argv;
next_arg += 2;
#endif
break;
case FFI_TYPE_POINTER:
gprvalue = *(unsigned long *) *p_argv;
goto putgpr;
case FFI_TYPE_UINT8:
gprvalue = *(unsigned char *) *p_argv;
goto putgpr;
case FFI_TYPE_SINT8:
gprvalue = *(signed char *) *p_argv;
goto putgpr;
case FFI_TYPE_UINT16:
gprvalue = *(unsigned short *) *p_argv;
goto putgpr;
case FFI_TYPE_SINT16:
gprvalue = *(signed short *) *p_argv;
goto putgpr;
case FFI_TYPE_STRUCT:
#ifdef POWERPC64
dest_cpy = (char *) next_arg;
size_al = (*ptr)->size;
if ((*ptr)->elements[0]->type == 3)
size_al = ALIGN((*ptr)->size, 8);
if (size_al < 3 && abi == FFI_DARWIN)
dest_cpy += 4 - size_al;
memcpy ((char *) dest_cpy, (char *) *p_argv, size_al);
next_arg += (size_al + 7) / 8;
#else
dest_cpy = (char *) next_arg;
/* Structures that match the basic modes (QI 1 byte, HI 2 bytes,
SI 4 bytes) are aligned as if they were those modes.
Structures with 3 byte in size are padded upwards. */
size_al = (*ptr)->size;
/* If the first member of the struct is a double, then align
the struct to double-word. */
if ((*ptr)->elements[0]->type == FFI_TYPE_DOUBLE)
size_al = ALIGN((*ptr)->size, 8);
if (size_al < 3 && abi == FFI_DARWIN)
dest_cpy += 4 - size_al;
memcpy((char *) dest_cpy, (char *) *p_argv, size_al);
next_arg += (size_al + 3) / 4;
#endif
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
gprvalue = *(signed int *) *p_argv;
goto putgpr;
case FFI_TYPE_UINT32:
gprvalue = *(unsigned int *) *p_argv;
putgpr:
*next_arg++ = gprvalue;
break;
default:
break;
}
}
/* Check that we didn't overrun the stack... */
//FFI_ASSERT(gpr_base <= stacktop - ASM_NEEDS_REGISTERS);
//FFI_ASSERT((unsigned *)fpr_base
// <= stacktop - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS);
//FFI_ASSERT(flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4);
}
/* Adjust the size of S to be correct for Darwin.
On Darwin, the first field of a structure has natural alignment. */
static void
darwin_adjust_aggregate_sizes (ffi_type *s)
{
int i;
if (s->type != FFI_TYPE_STRUCT)
return;
s->size = 0;
for (i = 0; s->elements[i] != NULL; i++)
{
ffi_type *p;
int align;
p = s->elements[i];
darwin_adjust_aggregate_sizes (p);
if (i == 0
&& (p->type == FFI_TYPE_UINT64
|| p->type == FFI_TYPE_SINT64
|| p->type == FFI_TYPE_DOUBLE
|| p->alignment == 8))
align = 8;
else if (p->alignment == 16 || p->alignment < 4)
align = p->alignment;
else
align = 4;
s->size = ALIGN(s->size, align) + p->size;
}
s->size = ALIGN(s->size, s->alignment);
if (s->elements[0]->type == FFI_TYPE_UINT64
|| s->elements[0]->type == FFI_TYPE_SINT64
|| s->elements[0]->type == FFI_TYPE_DOUBLE
|| s->elements[0]->alignment == 8)
s->alignment = s->alignment > 8 ? s->alignment : 8;
/* Do not add additional tail padding. */
}
/* Adjust the size of S to be correct for AIX.
Word-align double unless it is the first member of a structure. */
static void
aix_adjust_aggregate_sizes (ffi_type *s)
{
int i;
if (s->type != FFI_TYPE_STRUCT)
return;
s->size = 0;
for (i = 0; s->elements[i] != NULL; i++)
{
ffi_type *p;
int align;
p = s->elements[i];
aix_adjust_aggregate_sizes (p);
align = p->alignment;
if (i != 0 && p->type == FFI_TYPE_DOUBLE)
align = 4;
s->size = ALIGN(s->size, align) + p->size;
}
s->size = ALIGN(s->size, s->alignment);
if (s->elements[0]->type == FFI_TYPE_UINT64
|| s->elements[0]->type == FFI_TYPE_SINT64
|| s->elements[0]->type == FFI_TYPE_DOUBLE
|| s->elements[0]->alignment == 8)
s->alignment = s->alignment > 8 ? s->alignment : 8;
/* Do not add additional tail padding. */
}
/* Perform machine dependent cif processing. */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
/* All this is for the DARWIN ABI. */
int i;
ffi_type **ptr;
unsigned bytes;
int fparg_count = 0, intarg_count = 0;
unsigned flags = 0;
unsigned size_al = 0;
/* All the machine-independent calculation of cif->bytes will be wrong.
All the calculation of structure sizes will also be wrong.
Redo the calculation for DARWIN. */
if (cif->abi == FFI_DARWIN)
{
darwin_adjust_aggregate_sizes (cif->rtype);
for (i = 0; i < cif->nargs; i++)
darwin_adjust_aggregate_sizes (cif->arg_types[i]);
}
if (cif->abi == FFI_AIX)
{
aix_adjust_aggregate_sizes (cif->rtype);
for (i = 0; i < cif->nargs; i++)
aix_adjust_aggregate_sizes (cif->arg_types[i]);
}
/* Space for the frame pointer, callee's LR, CR, etc, and for
the asm's temp regs. */
bytes = (6 + ASM_NEEDS_REGISTERS) * sizeof(long);
/* Return value handling. The rules are as follows:
- 32-bit (or less) integer values are returned in gpr3;
- Structures of size <= 4 bytes also returned in gpr3;
- 64-bit integer values and structures between 5 and 8 bytes are returned
in gpr3 and gpr4;
- Single/double FP values are returned in fpr1;
- Long double FP (if not equivalent to double) values are returned in
fpr1 and fpr2;
- Larger structures values are allocated space and a pointer is passed
as the first argument. */
switch (cif->rtype->type)
{
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
flags |= FLAG_RETURNS_128BITS;
flags |= FLAG_RETURNS_FP;
break;
#endif
case FFI_TYPE_DOUBLE:
flags |= FLAG_RETURNS_64BITS;
/* Fall through. */
case FFI_TYPE_FLOAT:
flags |= FLAG_RETURNS_FP;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#ifdef POWERPC64
case FFI_TYPE_POINTER:
#endif
flags |= FLAG_RETURNS_64BITS;
break;
case FFI_TYPE_STRUCT:
flags |= FLAG_RETVAL_REFERENCE;
flags |= FLAG_RETURNS_NOTHING;
intarg_count++;
break;
case FFI_TYPE_VOID:
flags |= FLAG_RETURNS_NOTHING;
break;
default:
/* Returns 32-bit integer, or similar. Nothing to do here. */
break;
}
/* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the
first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest
goes on the stack. Structures are passed as a pointer to a copy of
the structure. Stuff on the stack needs to keep proper alignment. */
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
switch ((*ptr)->type)
{
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
fparg_count++;
/* If this FP arg is going on the stack, it must be
8-byte-aligned. */
if (fparg_count > NUM_FPR_ARG_REGISTERS
&& intarg_count%2 != 0)
intarg_count++;
break;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
fparg_count += 2;
/* If this FP arg is going on the stack, it must be
8-byte-aligned. */
if (fparg_count > NUM_FPR_ARG_REGISTERS
&& intarg_count%2 != 0)
intarg_count++;
intarg_count +=2;
break;
#endif
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
/* 'long long' arguments are passed as two words, but
either both words must fit in registers or both go
on the stack. If they go on the stack, they must
be 8-byte-aligned. */
if (intarg_count == NUM_GPR_ARG_REGISTERS-1
|| (intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count%2 != 0))
intarg_count++;
intarg_count += 2;
break;
case FFI_TYPE_STRUCT:
size_al = (*ptr)->size;
/* If the first member of the struct is a double, then align
the struct to double-word. */
if ((*ptr)->elements[0]->type == FFI_TYPE_DOUBLE)
size_al = ALIGN((*ptr)->size, 8);
#ifdef POWERPC64
intarg_count += (size_al + 7) / 8;
#else
intarg_count += (size_al + 3) / 4;
#endif
break;
default:
/* Everything else is passed as a 4-byte word in a GPR, either
the object itself or a pointer to it. */
intarg_count++;
break;
}
}
if (fparg_count != 0)
flags |= FLAG_FP_ARGUMENTS;
/* Space for the FPR registers, if needed. */
if (fparg_count != 0)
bytes += NUM_FPR_ARG_REGISTERS * sizeof(double);
/* Stack space. */
#ifdef POWERPC64
if ((intarg_count + fparg_count) > NUM_GPR_ARG_REGISTERS)
bytes += (intarg_count + fparg_count) * sizeof(long);
#else
if ((intarg_count + 2 * fparg_count) > NUM_GPR_ARG_REGISTERS)
bytes += (intarg_count + 2 * fparg_count) * sizeof(long);
#endif
else
bytes += NUM_GPR_ARG_REGISTERS * sizeof(long);
/* The stack space allocated needs to be a multiple of 16 bytes. */
bytes = (bytes + 15) & ~0xF;
cif->flags = flags;
cif->bytes = bytes;
return FFI_OK;
}
extern void ffi_call_AIX(extended_cif *, long, unsigned, unsigned *,
void (*fn)(void), void (*fn2)(void));
extern void ffi_call_DARWIN(extended_cif *, long, unsigned, unsigned *,
void (*fn)(void), void (*fn2)(void));
void
ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return
value address then we need to make one. */
if ((rvalue == NULL) &&
(cif->rtype->type == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca (cif->rtype->size);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_AIX:
ffi_call_AIX(&ecif, -(long)cif->bytes, cif->flags, ecif.rvalue, fn,
ffi_prep_args);
break;
case FFI_DARWIN:
ffi_call_DARWIN(&ecif, -(long)cif->bytes, cif->flags, ecif.rvalue, fn,
ffi_prep_args);
break;
default:
FFI_ASSERT(0);
break;
}
}
static void flush_icache(char *);
static void flush_range(char *, int);
/* The layout of a function descriptor. A C function pointer really
points to one of these. */
typedef struct aix_fd_struct {
void *code_pointer;
void *toc;
} aix_fd;
/* here I'd like to add the stack frame layout we use in darwin_closure.S
and aix_clsoure.S
SP previous -> +---------------------------------------+ <--- child frame
| back chain to caller 4 |
+---------------------------------------+ 4
| saved CR 4 |
+---------------------------------------+ 8
| saved LR 4 |
+---------------------------------------+ 12
| reserved for compilers 4 |
+---------------------------------------+ 16
| reserved for binders 4 |
+---------------------------------------+ 20
| saved TOC pointer 4 |
+---------------------------------------+ 24
| always reserved 8*4=32 (previous GPRs)|
| according to the linkage convention |
| from AIX |
+---------------------------------------+ 56
| our FPR area 13*8=104 |
| f1 |
| . |
| f13 |
+---------------------------------------+ 160
| result area 8 |
+---------------------------------------+ 168
| alignement to the next multiple of 16 |
SP current --> +---------------------------------------+ 176 <- parent frame
| back chain to caller 4 |
+---------------------------------------+ 180
| saved CR 4 |
+---------------------------------------+ 184
| saved LR 4 |
+---------------------------------------+ 188
| reserved for compilers 4 |
+---------------------------------------+ 192
| reserved for binders 4 |
+---------------------------------------+ 196
| saved TOC pointer 4 |
+---------------------------------------+ 200
| always reserved 8*4=32 we store our |
| GPRs here |
| r3 |
| . |
| r10 |
+---------------------------------------+ 232
| overflow part |
+---------------------------------------+ xxx
| ???? |
+---------------------------------------+ xxx
*/
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
unsigned int *tramp;
struct ffi_aix_trampoline_struct *tramp_aix;
aix_fd *fd;
switch (cif->abi)
{
case FFI_DARWIN:
FFI_ASSERT (cif->abi == FFI_DARWIN);
tramp = (unsigned int *) &closure->tramp[0];
tramp[0] = 0x7c0802a6; /* mflr r0 */
tramp[1] = 0x429f000d; /* bcl- 20,4*cr7+so,0x10 */
tramp[4] = 0x7d6802a6; /* mflr r11 */
tramp[5] = 0x818b0000; /* lwz r12,0(r11) function address */
tramp[6] = 0x7c0803a6; /* mtlr r0 */
tramp[7] = 0x7d8903a6; /* mtctr r12 */
tramp[8] = 0x816b0004; /* lwz r11,4(r11) static chain */
tramp[9] = 0x4e800420; /* bctr */
tramp[2] = (unsigned long) ffi_closure_ASM; /* function */
tramp[3] = (unsigned long) codeloc; /* context */
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
/* Flush the icache. Only necessary on Darwin. */
flush_range(codeloc, FFI_TRAMPOLINE_SIZE);
break;
case FFI_AIX:
tramp_aix = (struct ffi_aix_trampoline_struct *) (closure->tramp);
fd = (aix_fd *)(void *)ffi_closure_ASM;
FFI_ASSERT (cif->abi == FFI_AIX);
tramp_aix->code_pointer = fd->code_pointer;
tramp_aix->toc = fd->toc;
tramp_aix->static_chain = codeloc;
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
default:
FFI_ASSERT(0);
break;
}
return FFI_OK;
}
static void
flush_icache(char *addr)
{
#ifndef _AIX
__asm__ volatile (
"dcbf 0,%0\n"
"\tsync\n"
"\ticbi 0,%0\n"
"\tsync\n"
"\tisync"
: : "r"(addr) : "memory");
#endif
}
static void
flush_range(char * addr1, int size)
{
#define MIN_LINE_SIZE 32
int i;
for (i = 0; i < size; i += MIN_LINE_SIZE)
flush_icache(addr1+i);
flush_icache(addr1+size-1);
}
typedef union
{
float f;
double d;
} ffi_dblfl;
int
ffi_closure_helper_DARWIN (ffi_closure *, void *,
unsigned long *, ffi_dblfl *);
/* Basically the trampoline invokes ffi_closure_ASM, and on
entry, r11 holds the address of the closure.
After storing the registers that could possibly contain
parameters to be passed into the stack frame and setting
up space for a return value, ffi_closure_ASM invokes the
following helper function to do most of the work. */
int
ffi_closure_helper_DARWIN (ffi_closure *closure, void *rvalue,
unsigned long *pgr, ffi_dblfl *pfr)
{
/* rvalue is the pointer to space for return value in closure assembly
pgr is the pointer to where r3-r10 are stored in ffi_closure_ASM
pfr is the pointer to where f1-f13 are stored in ffi_closure_ASM. */
typedef double ldbits[2];
union ldu
{
ldbits lb;
long double ld;
};
void ** avalue;
ffi_type ** arg_types;
long i, avn;
ffi_cif * cif;
ffi_dblfl * end_pfr = pfr + NUM_FPR_ARG_REGISTERS;
unsigned size_al;
cif = closure->cif;
avalue = alloca (cif->nargs * sizeof(void *));
/* Copy the caller's structure return value address so that the closure
returns the data directly to the caller. */
if (cif->rtype->type == FFI_TYPE_STRUCT)
{
rvalue = (void *) *pgr;
pgr++;
}
i = 0;
avn = cif->nargs;
arg_types = cif->arg_types;
/* Grab the addresses of the arguments from the stack frame. */
while (i < avn)
{
switch (arg_types[i]->type)
{
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT8:
#ifdef POWERPC64
avalue[i] = (char *) pgr + 7;
#else
avalue[i] = (char *) pgr + 3;
#endif
pgr++;
break;
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT16:
#ifdef POWERPC64
avalue[i] = (char *) pgr + 6;
#else
avalue[i] = (char *) pgr + 2;
#endif
pgr++;
break;
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
#ifdef POWERPC64
avalue[i] = (char *) pgr + 4;
#else
case FFI_TYPE_POINTER:
avalue[i] = pgr;
#endif
pgr++;
break;
case FFI_TYPE_STRUCT:
#ifdef POWERPC64
size_al = arg_types[i]->size;
if (arg_types[i]->elements[0]->type == FFI_TYPE_DOUBLE)
size_al = ALIGN (arg_types[i]->size, 8);
if (size_al < 3 && cif->abi == FFI_DARWIN)
avalue[i] = (void *) pgr + 8 - size_al;
else
avalue[i] = (void *) pgr;
pgr += (size_al + 7) / 8;
#else
/* Structures that match the basic modes (QI 1 byte, HI 2 bytes,
SI 4 bytes) are aligned as if they were those modes. */
size_al = arg_types[i]->size;
/* If the first member of the struct is a double, then align
the struct to double-word. */
if (arg_types[i]->elements[0]->type == FFI_TYPE_DOUBLE)
size_al = ALIGN(arg_types[i]->size, 8);
if (size_al < 3 && cif->abi == FFI_DARWIN)
avalue[i] = (void*) pgr + 4 - size_al;
else
avalue[i] = (void*) pgr;
pgr += (size_al + 3) / 4;
#endif
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
#ifdef POWERPC64
case FFI_TYPE_POINTER:
avalue[i] = pgr;
pgr++;
break;
#else
/* Long long ints are passed in two gpr's. */
avalue[i] = pgr;
pgr += 2;
break;
#endif
case FFI_TYPE_FLOAT:
/* A float value consumes a GPR.
There are 13 64bit floating point registers. */
if (pfr < end_pfr)
{
double temp = pfr->d;
pfr->f = (float) temp;
avalue[i] = pfr;
pfr++;
}
else
{
avalue[i] = pgr;
}
pgr++;
break;
case FFI_TYPE_DOUBLE:
/* A double value consumes two GPRs.
There are 13 64bit floating point registers. */
if (pfr < end_pfr)
{
avalue[i] = pfr;
pfr++;
}
else
{
avalue[i] = pgr;
}
#ifdef POWERPC64
pgr++;
#else
pgr += 2;
#endif
break;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
#ifdef POWERPC64
if (pfr + 1 < end_pfr)
{
avalue[i] = pfr;
pfr += 2;
}
else
{
if (pfr < end_pfr)
{
*pgr = *(unsigned long *) pfr;
pfr++;
}
avalue[i] = pgr;
}
pgr += 2;
#else /* POWERPC64 */
/* A long double value consumes four GPRs and two FPRs.
There are 13 64bit floating point registers. */
if (pfr + 1 < end_pfr)
{
avalue[i] = pfr;
pfr += 2;
}
/* Here we have the situation where one part of the long double
is stored in fpr13 and the other part is already on the stack.
We use a union to pass the long double to avalue[i]. */
else if (pfr + 1 == end_pfr)
{
union ldu temp_ld;
memcpy (&temp_ld.lb[0], pfr, sizeof(ldbits));
memcpy (&temp_ld.lb[1], pgr + 2, sizeof(ldbits));
avalue[i] = &temp_ld.ld;
pfr++;
}
else
{
avalue[i] = pgr;
}
pgr += 4;
#endif /* POWERPC64 */
break;
#endif
default:
FFI_ASSERT(0);
}
i++;
}
(closure->fun) (cif, rvalue, avalue, closure->user_data);
/* Tell ffi_closure_ASM to perform return type promotions. */
return cif->rtype->type;
}

View File

@@ -0,0 +1,665 @@
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1996, 1998, 1999, 2001, 2007, 2008 Red Hat, Inc.
Copyright (c) 2002 Ranjit Mathew
Copyright (c) 2002 Bo Thorsen
Copyright (c) 2002 Roger Sayle
Copyright (C) 2008 Free Software Foundation, Inc.
x86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#if !defined(__x86_64__) || defined(_WIN64)
#ifdef _WIN64
#include <windows.h>
#endif
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments */
void ffi_prep_args(char *stack, extended_cif *ecif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if (ecif->cif->flags == FFI_TYPE_STRUCT
#ifdef X86_WIN64
&& (ecif->cif->rtype->size != 1 && ecif->cif->rtype->size != 2
&& ecif->cif->rtype->size != 4 && ecif->cif->rtype->size != 8)
#endif
)
{
*(void **) argp = ecif->rvalue;
argp += sizeof(void*);
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
i != 0;
i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(void*) - 1) & (size_t) argp)
argp = (char *) ALIGN(argp, sizeof(void*));
z = (*p_arg)->size;
#ifdef X86_WIN64
if (z > sizeof(ffi_arg)
|| ((*p_arg)->type == FFI_TYPE_STRUCT
&& (z != 1 && z != 2 && z != 4 && z != 8))
#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
|| ((*p_arg)->type == FFI_TYPE_LONGDOUBLE)
#endif
)
{
z = sizeof(ffi_arg);
*(void **)argp = *p_argv;
}
else if ((*p_arg)->type == FFI_TYPE_FLOAT)
{
memcpy(argp, *p_argv, z);
}
else
#endif
if (z < sizeof(ffi_arg))
{
z = sizeof(ffi_arg);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(ffi_arg *) argp = (ffi_arg)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(ffi_arg *) argp = (ffi_arg)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_SINT32:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT32 *)(* p_argv);
break;
case FFI_TYPE_UINT32:
*(ffi_arg *) argp = (ffi_arg)*(UINT32 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
*(ffi_arg *) argp = *(ffi_arg *)(* p_argv);
break;
default:
FFI_ASSERT(0);
}
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
#ifdef X86_WIN64
argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
#else
argp += z;
#endif
}
return;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
unsigned int i;
ffi_type **ptr;
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
#if defined(X86) || defined (X86_WIN32) || defined(X86_FREEBSD) || defined(X86_DARWIN) || defined(X86_WIN64)
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
#endif
#ifdef X86_WIN64
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
#endif
case FFI_TYPE_SINT64:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
#ifndef X86_WIN64
#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
case FFI_TYPE_LONGDOUBLE:
#endif
#endif
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_UINT64:
#ifdef X86_WIN64
case FFI_TYPE_POINTER:
#endif
cif->flags = FFI_TYPE_SINT64;
break;
case FFI_TYPE_STRUCT:
#ifndef X86
if (cif->rtype->size == 1)
{
cif->flags = FFI_TYPE_SMALL_STRUCT_1B; /* same as char size */
}
else if (cif->rtype->size == 2)
{
cif->flags = FFI_TYPE_SMALL_STRUCT_2B; /* same as short size */
}
else if (cif->rtype->size == 4)
{
#ifdef X86_WIN64
cif->flags = FFI_TYPE_SMALL_STRUCT_4B;
#else
cif->flags = FFI_TYPE_INT; /* same as int type */
#endif
}
else if (cif->rtype->size == 8)
{
cif->flags = FFI_TYPE_SINT64; /* same as int64 type */
}
else
#endif
{
cif->flags = FFI_TYPE_STRUCT;
// allocate space for return value pointer
cif->bytes += ALIGN(sizeof(void*), FFI_SIZEOF_ARG);
}
break;
default:
#ifdef X86_WIN64
cif->flags = FFI_TYPE_SINT64;
break;
case FFI_TYPE_INT:
cif->flags = FFI_TYPE_SINT32;
#else
cif->flags = FFI_TYPE_INT;
#endif
break;
}
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
if (((*ptr)->alignment - 1) & cif->bytes)
cif->bytes = ALIGN(cif->bytes, (*ptr)->alignment);
cif->bytes += ALIGN((*ptr)->size, FFI_SIZEOF_ARG);
}
#ifdef X86_WIN64
// ensure space for storing four registers
cif->bytes += 4 * sizeof(ffi_arg);
#endif
#ifdef X86_DARWIN
cif->bytes = (cif->bytes + 15) & ~0xF;
#endif
return FFI_OK;
}
#ifdef X86_WIN64
extern int
ffi_call_win64(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned *, void (*fn)(void));
#elif defined(X86_WIN32)
extern void
ffi_call_win32(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned *, void (*fn)(void));
#else
extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned *, void (*fn)(void));
#endif
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
#ifdef X86_WIN64
if (rvalue == NULL
&& cif->flags == FFI_TYPE_STRUCT
&& cif->rtype->size != 1 && cif->rtype->size != 2
&& cif->rtype->size != 4 && cif->rtype->size != 8)
{
ecif.rvalue = alloca((cif->rtype->size + 0xF) & ~0xF);
}
#else
if (rvalue == NULL
&& cif->flags == FFI_TYPE_STRUCT)
{
ecif.rvalue = alloca(cif->rtype->size);
}
#endif
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
#ifdef X86_WIN64
case FFI_WIN64:
{
// Make copies of all struct arguments
// NOTE: not sure if responsibility should be here or in caller
unsigned int i;
for (i=0; i < cif->nargs;i++) {
size_t size = cif->arg_types[i]->size;
if ((cif->arg_types[i]->type == FFI_TYPE_STRUCT
&& (size != 1 && size != 2 && size != 4 && size != 8))
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|| cif->arg_types[i]->type == FFI_TYPE_LONGDOUBLE
#endif
)
{
void *local = alloca(size);
memcpy(local, avalue[i], size);
avalue[i] = local;
}
}
ffi_call_win64(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
}
break;
#elif defined(X86_WIN32)
case FFI_SYSV:
case FFI_STDCALL:
ffi_call_win32(ffi_prep_args, &ecif, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
#else
case FFI_SYSV:
ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue,
fn);
break;
#endif
default:
FFI_ASSERT(0);
break;
}
}
/** private members **/
/* The following __attribute__((regparm(1))) decorations will have no effect
on MSVC - standard cdecl convention applies. */
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif);
void FFI_HIDDEN ffi_closure_SYSV (ffi_closure *)
__attribute__ ((regparm(1)));
unsigned int FFI_HIDDEN ffi_closure_SYSV_inner (ffi_closure *, void **, void *)
__attribute__ ((regparm(1)));
void FFI_HIDDEN ffi_closure_raw_SYSV (ffi_raw_closure *)
__attribute__ ((regparm(1)));
#ifdef X86_WIN32
void FFI_HIDDEN ffi_closure_STDCALL (ffi_closure *)
__attribute__ ((regparm(1)));
#endif
#ifdef X86_WIN64
void FFI_HIDDEN ffi_closure_win64 (ffi_closure *);
#endif
/* This function is jumped to by the trampoline */
#ifdef X86_WIN64
void * FFI_HIDDEN
ffi_closure_win64_inner (ffi_closure *closure, void *args) {
ffi_cif *cif;
void **arg_area;
void *result;
void *resp = &result;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will change RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, &resp, arg_area, cif);
(closure->fun) (cif, resp, arg_area, closure->user_data);
/* The result is returned in rax. This does the right thing for
result types except for floats; we have to 'mov xmm0, rax' in the
caller to correct this.
TODO: structure sizes of 3 5 6 7 are returned by reference, too!!!
*/
return cif->rtype->size > sizeof(void *) ? resp : *(void **)resp;
}
#else
unsigned int FFI_HIDDEN __attribute__ ((regparm(1)))
ffi_closure_SYSV_inner (ffi_closure *closure, void **respp, void *args)
{
/* our various things... */
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will change RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
return cif->flags;
}
#endif /* !X86_WIN64 */
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue, void **avalue,
ffi_cif *cif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
#ifdef X86_WIN64
if (cif->rtype->size > sizeof(ffi_arg)
|| (cif->flags == FFI_TYPE_STRUCT
&& (cif->rtype->size != 1 && cif->rtype->size != 2
&& cif->rtype->size != 4 && cif->rtype->size != 8))) {
*rvalue = *(void **) argp;
argp += sizeof(void *);
}
#else
if ( cif->flags == FFI_TYPE_STRUCT ) {
*rvalue = *(void **) argp;
argp += sizeof(void *);
}
#endif
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(void*) - 1) & (size_t) argp) {
argp = (char *) ALIGN(argp, sizeof(void*));
}
#ifdef X86_WIN64
if ((*p_arg)->size > sizeof(ffi_arg)
|| ((*p_arg)->type == FFI_TYPE_STRUCT
&& ((*p_arg)->size != 1 && (*p_arg)->size != 2
&& (*p_arg)->size != 4 && (*p_arg)->size != 8)))
{
z = sizeof(void *);
*p_argv = *(void **)argp;
}
else
#endif
{
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
}
p_argv++;
#ifdef X86_WIN64
argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
#else
argp += z;
#endif
}
return;
}
#define FFI_INIT_TRAMPOLINE_WIN64(TRAMP,FUN,CTX,MASK) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
void* __fun = (void*)(FUN); \
void* __ctx = (void*)(CTX); \
*(unsigned char*) &__tramp[0] = 0x41; \
*(unsigned char*) &__tramp[1] = 0xbb; \
*(unsigned int*) &__tramp[2] = MASK; /* mov $mask, %r11 */ \
*(unsigned char*) &__tramp[6] = 0x48; \
*(unsigned char*) &__tramp[7] = 0xb8; \
*(void**) &__tramp[8] = __ctx; /* mov __ctx, %rax */ \
*(unsigned char *) &__tramp[16] = 0x49; \
*(unsigned char *) &__tramp[17] = 0xba; \
*(void**) &__tramp[18] = __fun; /* mov __fun, %r10 */ \
*(unsigned char *) &__tramp[26] = 0x41; \
*(unsigned char *) &__tramp[27] = 0xff; \
*(unsigned char *) &__tramp[28] = 0xe2; /* jmp %r10 */ \
}
/* How to make a trampoline. Derived from gcc/config/i386/i386.c. */
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 10); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[5] = 0xe9; \
*(unsigned int*) &__tramp[6] = __dis; /* jmp __fun */ \
}
#define FFI_INIT_TRAMPOLINE_STDCALL(TRAMP,FUN,CTX,SIZE) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 10); \
unsigned short __size = (unsigned short)(SIZE); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[5] = 0xe8; \
*(unsigned int*) &__tramp[6] = __dis; /* call __fun */ \
*(unsigned char *) &__tramp[10] = 0xc2; \
*(unsigned short*) &__tramp[11] = __size; /* ret __size */ \
}
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
#ifdef X86_WIN64
#define ISFLOAT(IDX) (cif->arg_types[IDX]->type == FFI_TYPE_FLOAT || cif->arg_types[IDX]->type == FFI_TYPE_DOUBLE)
#define FLAG(IDX) (cif->nargs>(IDX)&&ISFLOAT(IDX)?(1<<(IDX)):0)
if (cif->abi == FFI_WIN64)
{
int mask = FLAG(0)|FLAG(1)|FLAG(2)|FLAG(3);
FFI_INIT_TRAMPOLINE_WIN64 (&closure->tramp[0],
&ffi_closure_win64,
codeloc, mask);
/* make sure we can execute here */
}
#else
if (cif->abi == FFI_SYSV)
{
FFI_INIT_TRAMPOLINE (&closure->tramp[0],
&ffi_closure_SYSV,
(void*)codeloc);
}
#ifdef X86_WIN32
else if (cif->abi == FFI_STDCALL)
{
FFI_INIT_TRAMPOLINE_STDCALL (&closure->tramp[0],
&ffi_closure_STDCALL,
(void*)codeloc, cif->bytes);
}
#endif /* X86_WIN32 */
#endif /* !X86_WIN64 */
else
{
return FFI_BAD_ABI;
}
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* ------- Native raw API support -------------------------------- */
#if !FFI_NO_RAW_API
ffi_status
ffi_prep_raw_closure_loc (ffi_raw_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data,
void *codeloc)
{
int i;
if (cif->abi != FFI_SYSV) {
return FFI_BAD_ABI;
}
/* we currently don't support certain kinds of arguments for raw
closures. This should be implemented by a separate assembly
language routine, since it would require argument processing,
something we don't do now for performance. */
for (i = cif->nargs-1; i >= 0; i--)
{
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_STRUCT);
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_LONGDOUBLE);
}
FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_raw_SYSV,
codeloc);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
static void
ffi_prep_args_raw(char *stack, extended_cif *ecif)
{
memcpy (stack, ecif->avalue, ecif->cif->bytes);
}
/* we borrow this routine from libffi (it must be changed, though, to
* actually call the function passed in the first argument. as of
* libffi-1.20, this is not the case.)
*/
void
ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *fake_avalue)
{
extended_cif ecif;
void **avalue = (void **)fake_avalue;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->rtype->type == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
#ifdef X86_WIN32
case FFI_SYSV:
case FFI_STDCALL:
ffi_call_win32(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
#else
case FFI_SYSV:
ffi_call_SYSV(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
#endif
default:
FFI_ASSERT(0);
break;
}
}
#endif
#endif /* !__x86_64__ || X86_WIN64 */

View File

@@ -0,0 +1,120 @@
/* -----------------------------------------------------------------*-C-*-
ffitarget.h - Copyright (c) 1996-2003, 2010 Red Hat, Inc.
Copyright (C) 2008 Free Software Foundation, Inc.
Target configuration macros for x86 and x86-64.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef LIBFFI_TARGET_H
#define LIBFFI_TARGET_H
/* ---- System specific configurations ----------------------------------- */
#if defined (X86_64) && defined (__i386__)
#undef X86_64
#define X86
#endif
#ifdef X86_WIN64
#define FFI_SIZEOF_ARG 8
#define USE_BUILTIN_FFS 0 // not yet implemented in mingw-64
#endif
/* ---- Generic type definitions ----------------------------------------- */
#ifndef LIBFFI_ASM
#ifdef X86_WIN64
#ifdef _MSC_VER
typedef unsigned __int64 ffi_arg;
typedef __int64 ffi_sarg;
#else
typedef unsigned long long ffi_arg;
typedef long long ffi_sarg;
#endif
#else
typedef unsigned long ffi_arg;
typedef signed long ffi_sarg;
#endif
typedef enum ffi_abi {
FFI_FIRST_ABI = 0,
/* ---- Intel x86 Win32 ---------- */
#ifdef X86_WIN32
FFI_SYSV,
FFI_STDCALL,
/* TODO: Add fastcall support for the sake of completeness */
FFI_DEFAULT_ABI = FFI_SYSV,
#endif
#ifdef X86_WIN64
FFI_WIN64,
FFI_DEFAULT_ABI = FFI_WIN64,
#else
/* ---- Intel x86 and AMD x86-64 - */
#if !defined(X86_WIN32) && (defined(__i386__) || defined(__x86_64__) || defined(__i386) || defined(__amd64))
FFI_SYSV,
FFI_UNIX64, /* Unix variants all use the same ABI for x86-64 */
#if defined(__i386__) || defined(__i386)
FFI_DEFAULT_ABI = FFI_SYSV,
#else
FFI_DEFAULT_ABI = FFI_UNIX64,
#endif
#endif
#endif /* X86_WIN64 */
FFI_LAST_ABI = FFI_DEFAULT_ABI + 1
} ffi_abi;
#endif
/* ---- Definitions for closures ----------------------------------------- */
#define FFI_CLOSURES 1
#define FFI_TYPE_SMALL_STRUCT_1B (FFI_TYPE_LAST + 1)
#define FFI_TYPE_SMALL_STRUCT_2B (FFI_TYPE_LAST + 2)
#define FFI_TYPE_SMALL_STRUCT_4B (FFI_TYPE_LAST + 3)
#if defined (X86_64) || (defined (__x86_64__) && defined (X86_DARWIN))
#define FFI_TRAMPOLINE_SIZE 24
#define FFI_NATIVE_RAW_API 0
#else
#ifdef X86_WIN32
#define FFI_TRAMPOLINE_SIZE 13
#else
#ifdef X86_WIN64
#define FFI_TRAMPOLINE_SIZE 29
#define FFI_NATIVE_RAW_API 0
#define FFI_NO_RAW_API 1
#else
#define FFI_TRAMPOLINE_SIZE 10
#endif
#endif
#ifndef X86_WIN64
#define FFI_NATIVE_RAW_API 1 /* x86 has native raw api support */
#endif
#endif
#endif