Import OpenSSL 1.1.0f
This commit is contained in:
@@ -1,69 +1,23 @@
|
||||
/* crypto/asn1/a_int.c */
|
||||
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||||
* All rights reserved.
|
||||
/*
|
||||
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* This package is an SSL implementation written
|
||||
* by Eric Young (eay@cryptsoft.com).
|
||||
* The implementation was written so as to conform with Netscapes SSL.
|
||||
*
|
||||
* This library is free for commercial and non-commercial use as long as
|
||||
* the following conditions are aheared to. The following conditions
|
||||
* apply to all code found in this distribution, be it the RC4, RSA,
|
||||
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||||
* included with this distribution is covered by the same copyright terms
|
||||
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||||
*
|
||||
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||||
* the code are not to be removed.
|
||||
* If this package is used in a product, Eric Young should be given attribution
|
||||
* as the author of the parts of the library used.
|
||||
* This can be in the form of a textual message at program startup or
|
||||
* in documentation (online or textual) provided with the package.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* "This product includes cryptographic software written by
|
||||
* Eric Young (eay@cryptsoft.com)"
|
||||
* The word 'cryptographic' can be left out if the rouines from the library
|
||||
* being used are not cryptographic related :-).
|
||||
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||||
* the apps directory (application code) you must include an acknowledgement:
|
||||
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* The licence and distribution terms for any publically available version or
|
||||
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||||
* copied and put under another distribution licence
|
||||
* [including the GNU Public Licence.]
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "cryptlib.h"
|
||||
#include "internal/cryptlib.h"
|
||||
#include "internal/numbers.h"
|
||||
#include <limits.h>
|
||||
#include <openssl/asn1.h>
|
||||
#include <openssl/bn.h>
|
||||
#include "asn1_locl.h"
|
||||
|
||||
ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
|
||||
{
|
||||
return M_ASN1_INTEGER_dup(x);
|
||||
return ASN1_STRING_dup(x);
|
||||
}
|
||||
|
||||
int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
|
||||
@@ -87,10 +41,11 @@ int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
|
||||
}
|
||||
|
||||
/*-
|
||||
* This converts an ASN1 INTEGER into its content encoding.
|
||||
* This converts a big endian buffer and sign into its content encoding.
|
||||
* This is used for INTEGER and ENUMERATED types.
|
||||
* The internal representation is an ASN1_STRING whose data is a big endian
|
||||
* representation of the value, ignoring the sign. The sign is determined by
|
||||
* the type: V_ASN1_INTEGER for positive and V_ASN1_NEG_INTEGER for negative.
|
||||
* the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
|
||||
*
|
||||
* Positive integers are no problem: they are almost the same as the DER
|
||||
* encoding, except if the first byte is >= 0x80 we need to add a zero pad.
|
||||
@@ -111,165 +66,316 @@ int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
|
||||
* followed by optional zeros isn't padded.
|
||||
*/
|
||||
|
||||
int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
|
||||
/*
|
||||
* If |pad| is zero, the operation is effectively reduced to memcpy,
|
||||
* and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
|
||||
* Note that in latter case sequence of zeros yields itself, and so
|
||||
* does 0x80 followed by any number of zeros. These properties are
|
||||
* used elsewhere below...
|
||||
*/
|
||||
static void twos_complement(unsigned char *dst, const unsigned char *src,
|
||||
size_t len, unsigned char pad)
|
||||
{
|
||||
int pad = 0, ret, i, neg;
|
||||
unsigned char *p, *n, pb = 0;
|
||||
unsigned int carry = pad & 1;
|
||||
|
||||
if (a == NULL)
|
||||
return (0);
|
||||
neg = a->type & V_ASN1_NEG;
|
||||
if (a->length == 0)
|
||||
ret = 1;
|
||||
else {
|
||||
ret = a->length;
|
||||
i = a->data[0];
|
||||
if (ret == 1 && i == 0)
|
||||
neg = 0;
|
||||
/* Begin at the end of the encoding */
|
||||
dst += len;
|
||||
src += len;
|
||||
/* two's complement value: ~value + 1 */
|
||||
while (len-- != 0) {
|
||||
*(--dst) = (unsigned char)(carry += *(--src) ^ pad);
|
||||
carry >>= 8;
|
||||
}
|
||||
}
|
||||
|
||||
static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
|
||||
unsigned char **pp)
|
||||
{
|
||||
unsigned int pad = 0;
|
||||
size_t ret, i;
|
||||
unsigned char *p, pb = 0;
|
||||
|
||||
if (b != NULL && blen) {
|
||||
ret = blen;
|
||||
i = b[0];
|
||||
if (!neg && (i > 127)) {
|
||||
pad = 1;
|
||||
pb = 0;
|
||||
} else if (neg) {
|
||||
pb = 0xFF;
|
||||
if (i > 128) {
|
||||
pad = 1;
|
||||
pb = 0xFF;
|
||||
} else if (i == 128) {
|
||||
/*
|
||||
* Special case: if any other bytes non zero we pad:
|
||||
* otherwise we don't.
|
||||
* Special case [of minimal negative for given length]:
|
||||
* if any other bytes non zero we pad, otherwise we don't.
|
||||
*/
|
||||
for (i = 1; i < a->length; i++)
|
||||
if (a->data[i]) {
|
||||
pad = 1;
|
||||
pb = 0xFF;
|
||||
break;
|
||||
}
|
||||
for (pad = 0, i = 1; i < blen; i++)
|
||||
pad |= b[i];
|
||||
pb = pad != 0 ? 0xffU : 0;
|
||||
pad = pb & 1;
|
||||
}
|
||||
}
|
||||
ret += pad;
|
||||
} else {
|
||||
ret = 1;
|
||||
blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
|
||||
}
|
||||
if (pp == NULL)
|
||||
return (ret);
|
||||
p = *pp;
|
||||
|
||||
if (pad)
|
||||
*(p++) = pb;
|
||||
if (a->length == 0)
|
||||
*(p++) = 0;
|
||||
else if (!neg)
|
||||
memcpy(p, a->data, (unsigned int)a->length);
|
||||
else {
|
||||
/* Begin at the end of the encoding */
|
||||
n = a->data + a->length - 1;
|
||||
p += a->length - 1;
|
||||
i = a->length;
|
||||
/* Copy zeros to destination as long as source is zero */
|
||||
while (!*n && i > 1) {
|
||||
*(p--) = 0;
|
||||
n--;
|
||||
i--;
|
||||
}
|
||||
/* Complement and increment next octet */
|
||||
*(p--) = ((*(n--)) ^ 0xff) + 1;
|
||||
i--;
|
||||
/* Complement any octets left */
|
||||
for (; i > 0; i--)
|
||||
*(p--) = *(n--) ^ 0xff;
|
||||
}
|
||||
if (pp == NULL || (p = *pp) == NULL)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* This magically handles all corner cases, such as '(b == NULL ||
|
||||
* blen == 0)', non-negative value, "negative" zero, 0x80 followed
|
||||
* by any number of zeros...
|
||||
*/
|
||||
*p = pb;
|
||||
p += pad; /* yes, p[0] can be written twice, but it's little
|
||||
* price to pay for eliminated branches */
|
||||
twos_complement(p, b, blen, pb);
|
||||
|
||||
*pp += ret;
|
||||
return (ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Convert just ASN1 INTEGER content octets to ASN1_INTEGER structure */
|
||||
/*
|
||||
* convert content octets into a big endian buffer. Returns the length
|
||||
* of buffer or 0 on error: for malformed INTEGER. If output buffer is
|
||||
* NULL just return length.
|
||||
*/
|
||||
|
||||
static size_t c2i_ibuf(unsigned char *b, int *pneg,
|
||||
const unsigned char *p, size_t plen)
|
||||
{
|
||||
int neg, pad;
|
||||
/* Zero content length is illegal */
|
||||
if (plen == 0) {
|
||||
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
|
||||
return 0;
|
||||
}
|
||||
neg = p[0] & 0x80;
|
||||
if (pneg)
|
||||
*pneg = neg;
|
||||
/* Handle common case where length is 1 octet separately */
|
||||
if (plen == 1) {
|
||||
if (b != NULL) {
|
||||
if (neg)
|
||||
b[0] = (p[0] ^ 0xFF) + 1;
|
||||
else
|
||||
b[0] = p[0];
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
pad = 0;
|
||||
if (p[0] == 0) {
|
||||
pad = 1;
|
||||
} else if (p[0] == 0xFF) {
|
||||
size_t i;
|
||||
|
||||
/*
|
||||
* Special case [of "one less minimal negative" for given length]:
|
||||
* if any other bytes non zero it was padded, otherwise not.
|
||||
*/
|
||||
for (pad = 0, i = 1; i < plen; i++)
|
||||
pad |= p[i];
|
||||
pad = pad != 0 ? 1 : 0;
|
||||
}
|
||||
/* reject illegal padding: first two octets MSB can't match */
|
||||
if (pad && (neg == (p[1] & 0x80))) {
|
||||
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* skip over pad */
|
||||
p += pad;
|
||||
plen -= pad;
|
||||
|
||||
if (b != NULL)
|
||||
twos_complement(b, p, plen, neg ? 0xffU : 0);
|
||||
|
||||
return plen;
|
||||
}
|
||||
|
||||
int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
|
||||
{
|
||||
return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
|
||||
}
|
||||
|
||||
/* Convert big endian buffer into uint64_t, return 0 on error */
|
||||
static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
|
||||
{
|
||||
size_t i;
|
||||
uint64_t r;
|
||||
|
||||
if (blen > sizeof(*pr)) {
|
||||
ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
|
||||
return 0;
|
||||
}
|
||||
if (b == NULL)
|
||||
return 0;
|
||||
for (r = 0, i = 0; i < blen; i++) {
|
||||
r <<= 8;
|
||||
r |= b[i];
|
||||
}
|
||||
*pr = r;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write uint64_t to big endian buffer and return offset to first
|
||||
* written octet. In other words it returns offset in range from 0
|
||||
* to 7, with 0 denoting 8 written octets and 7 - one.
|
||||
*/
|
||||
static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
|
||||
{
|
||||
size_t off = sizeof(uint64_t);
|
||||
|
||||
do {
|
||||
b[--off] = (unsigned char)r;
|
||||
} while (r >>= 8);
|
||||
|
||||
return off;
|
||||
}
|
||||
|
||||
/*
|
||||
* Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
|
||||
* overflow warnings.
|
||||
*/
|
||||
#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))
|
||||
|
||||
/* signed version of asn1_get_uint64 */
|
||||
static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
|
||||
int neg)
|
||||
{
|
||||
uint64_t r;
|
||||
if (asn1_get_uint64(&r, b, blen) == 0)
|
||||
return 0;
|
||||
if (neg) {
|
||||
if (r <= INT64_MAX) {
|
||||
/* Most significant bit is guaranteed to be clear, negation
|
||||
* is guaranteed to be meaningful in platform-neutral sense. */
|
||||
*pr = -(int64_t)r;
|
||||
} else if (r == ABS_INT64_MIN) {
|
||||
/* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
|
||||
* on ones'-complement system. */
|
||||
*pr = (int64_t)(0 - r);
|
||||
} else {
|
||||
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
|
||||
return 0;
|
||||
}
|
||||
} else {
|
||||
if (r <= INT64_MAX) {
|
||||
*pr = (int64_t)r;
|
||||
} else {
|
||||
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
|
||||
ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
||||
long len)
|
||||
{
|
||||
ASN1_INTEGER *ret = NULL;
|
||||
const unsigned char *p, *pend;
|
||||
unsigned char *to, *s;
|
||||
int i;
|
||||
size_t r;
|
||||
int neg;
|
||||
|
||||
r = c2i_ibuf(NULL, NULL, *pp, len);
|
||||
|
||||
if (r == 0)
|
||||
return NULL;
|
||||
|
||||
if ((a == NULL) || ((*a) == NULL)) {
|
||||
if ((ret = M_ASN1_INTEGER_new()) == NULL)
|
||||
return (NULL);
|
||||
ret = ASN1_INTEGER_new();
|
||||
if (ret == NULL)
|
||||
return NULL;
|
||||
ret->type = V_ASN1_INTEGER;
|
||||
} else
|
||||
ret = (*a);
|
||||
ret = *a;
|
||||
|
||||
p = *pp;
|
||||
pend = p + len;
|
||||
|
||||
/*
|
||||
* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
|
||||
* a missing NULL parameter.
|
||||
*/
|
||||
s = (unsigned char *)OPENSSL_malloc((int)len + 1);
|
||||
if (s == NULL) {
|
||||
i = ERR_R_MALLOC_FAILURE;
|
||||
if (ASN1_STRING_set(ret, NULL, r) == 0)
|
||||
goto err;
|
||||
}
|
||||
to = s;
|
||||
if (!len) {
|
||||
/*
|
||||
* Strictly speaking this is an illegal INTEGER but we tolerate it.
|
||||
*/
|
||||
ret->type = V_ASN1_INTEGER;
|
||||
} else if (*p & 0x80) { /* a negative number */
|
||||
ret->type = V_ASN1_NEG_INTEGER;
|
||||
if ((*p == 0xff) && (len != 1)) {
|
||||
p++;
|
||||
len--;
|
||||
}
|
||||
i = len;
|
||||
p += i - 1;
|
||||
to += i - 1;
|
||||
while ((!*p) && i) {
|
||||
*(to--) = 0;
|
||||
i--;
|
||||
p--;
|
||||
}
|
||||
/*
|
||||
* Special case: if all zeros then the number will be of the form FF
|
||||
* followed by n zero bytes: this corresponds to 1 followed by n zero
|
||||
* bytes. We've already written n zeros so we just append an extra
|
||||
* one and set the first byte to a 1. This is treated separately
|
||||
* because it is the only case where the number of bytes is larger
|
||||
* than len.
|
||||
*/
|
||||
if (!i) {
|
||||
*s = 1;
|
||||
s[len] = 0;
|
||||
len++;
|
||||
} else {
|
||||
*(to--) = (*(p--) ^ 0xff) + 1;
|
||||
i--;
|
||||
for (; i > 0; i--)
|
||||
*(to--) = *(p--) ^ 0xff;
|
||||
}
|
||||
} else {
|
||||
ret->type = V_ASN1_INTEGER;
|
||||
if ((*p == 0) && (len != 1)) {
|
||||
p++;
|
||||
len--;
|
||||
}
|
||||
memcpy(s, p, (int)len);
|
||||
}
|
||||
|
||||
if (ret->data != NULL)
|
||||
OPENSSL_free(ret->data);
|
||||
ret->data = s;
|
||||
ret->length = (int)len;
|
||||
c2i_ibuf(ret->data, &neg, *pp, len);
|
||||
|
||||
if (neg)
|
||||
ret->type |= V_ASN1_NEG;
|
||||
|
||||
*pp += len;
|
||||
if (a != NULL)
|
||||
(*a) = ret;
|
||||
*pp = pend;
|
||||
return (ret);
|
||||
return ret;
|
||||
err:
|
||||
ASN1err(ASN1_F_C2I_ASN1_INTEGER, i);
|
||||
if ((ret != NULL) && ((a == NULL) || (*a != ret)))
|
||||
M_ASN1_INTEGER_free(ret);
|
||||
return (NULL);
|
||||
ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
|
||||
if ((a == NULL) || (*a != ret))
|
||||
ASN1_INTEGER_free(ret);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
|
||||
{
|
||||
if (a == NULL) {
|
||||
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
|
||||
return 0;
|
||||
}
|
||||
if ((a->type & ~V_ASN1_NEG) != itype) {
|
||||
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
|
||||
return 0;
|
||||
}
|
||||
return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
|
||||
}
|
||||
|
||||
static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
|
||||
{
|
||||
unsigned char tbuf[sizeof(r)];
|
||||
size_t off;
|
||||
|
||||
a->type = itype;
|
||||
if (r < 0) {
|
||||
/* Most obvious '-r' triggers undefined behaviour for most
|
||||
* common INT64_MIN. Even though below '0 - (uint64_t)r' can
|
||||
* appear two's-complement centric, it does produce correct/
|
||||
* expected result even on one's-complement. This is because
|
||||
* cast to unsigned has to change bit pattern... */
|
||||
off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
|
||||
a->type |= V_ASN1_NEG;
|
||||
} else {
|
||||
off = asn1_put_uint64(tbuf, r);
|
||||
a->type &= ~V_ASN1_NEG;
|
||||
}
|
||||
return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
|
||||
}
|
||||
|
||||
static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
|
||||
int itype)
|
||||
{
|
||||
if (a == NULL) {
|
||||
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
|
||||
return 0;
|
||||
}
|
||||
if ((a->type & ~V_ASN1_NEG) != itype) {
|
||||
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
|
||||
return 0;
|
||||
}
|
||||
if (a->type & V_ASN1_NEG) {
|
||||
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
|
||||
return 0;
|
||||
}
|
||||
return asn1_get_uint64(pr, a->data, a->length);
|
||||
}
|
||||
|
||||
static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
|
||||
{
|
||||
unsigned char tbuf[sizeof(r)];
|
||||
size_t off;
|
||||
|
||||
a->type = itype;
|
||||
off = asn1_put_uint64(tbuf, r);
|
||||
return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -289,7 +395,7 @@ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
||||
int i;
|
||||
|
||||
if ((a == NULL) || ((*a) == NULL)) {
|
||||
if ((ret = M_ASN1_INTEGER_new()) == NULL)
|
||||
if ((ret = ASN1_INTEGER_new()) == NULL)
|
||||
return (NULL);
|
||||
ret->type = V_ASN1_INTEGER;
|
||||
} else
|
||||
@@ -311,7 +417,7 @@ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
||||
* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
|
||||
* a missing NULL parameter.
|
||||
*/
|
||||
s = (unsigned char *)OPENSSL_malloc((int)len + 1);
|
||||
s = OPENSSL_malloc((int)len + 1);
|
||||
if (s == NULL) {
|
||||
i = ERR_R_MALLOC_FAILURE;
|
||||
goto err;
|
||||
@@ -326,8 +432,7 @@ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
||||
p += len;
|
||||
}
|
||||
|
||||
if (ret->data != NULL)
|
||||
OPENSSL_free(ret->data);
|
||||
OPENSSL_free(ret->data);
|
||||
ret->data = s;
|
||||
ret->length = (int)len;
|
||||
if (a != NULL)
|
||||
@@ -336,129 +441,190 @@ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
||||
return (ret);
|
||||
err:
|
||||
ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
|
||||
if ((ret != NULL) && ((a == NULL) || (*a != ret)))
|
||||
M_ASN1_INTEGER_free(ret);
|
||||
if ((a == NULL) || (*a != ret))
|
||||
ASN1_INTEGER_free(ret);
|
||||
return (NULL);
|
||||
}
|
||||
|
||||
static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
|
||||
int atype)
|
||||
{
|
||||
ASN1_INTEGER *ret;
|
||||
int len;
|
||||
|
||||
if (ai == NULL) {
|
||||
ret = ASN1_STRING_type_new(atype);
|
||||
} else {
|
||||
ret = ai;
|
||||
ret->type = atype;
|
||||
}
|
||||
|
||||
if (ret == NULL) {
|
||||
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (BN_is_negative(bn) && !BN_is_zero(bn))
|
||||
ret->type |= V_ASN1_NEG_INTEGER;
|
||||
|
||||
len = BN_num_bytes(bn);
|
||||
|
||||
if (len == 0)
|
||||
len = 1;
|
||||
|
||||
if (ASN1_STRING_set(ret, NULL, len) == 0) {
|
||||
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Correct zero case */
|
||||
if (BN_is_zero(bn))
|
||||
ret->data[0] = 0;
|
||||
else
|
||||
len = BN_bn2bin(bn, ret->data);
|
||||
ret->length = len;
|
||||
return ret;
|
||||
err:
|
||||
if (ret != ai)
|
||||
ASN1_INTEGER_free(ret);
|
||||
return (NULL);
|
||||
}
|
||||
|
||||
static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
|
||||
int itype)
|
||||
{
|
||||
BIGNUM *ret;
|
||||
|
||||
if ((ai->type & ~V_ASN1_NEG) != itype) {
|
||||
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ret = BN_bin2bn(ai->data, ai->length, bn);
|
||||
if (ret == NULL) {
|
||||
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
|
||||
return NULL;
|
||||
}
|
||||
if (ai->type & V_ASN1_NEG)
|
||||
BN_set_negative(ret, 1);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
|
||||
{
|
||||
return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
|
||||
}
|
||||
|
||||
int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
|
||||
{
|
||||
return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
|
||||
}
|
||||
|
||||
int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
|
||||
{
|
||||
return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
|
||||
}
|
||||
|
||||
int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
|
||||
{
|
||||
return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
|
||||
}
|
||||
|
||||
int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
|
||||
{
|
||||
int j, k;
|
||||
unsigned int i;
|
||||
unsigned char buf[sizeof(long) + 1];
|
||||
long d;
|
||||
|
||||
a->type = V_ASN1_INTEGER;
|
||||
if (a->length < (int)(sizeof(long) + 1)) {
|
||||
if (a->data != NULL)
|
||||
OPENSSL_free(a->data);
|
||||
if ((a->data =
|
||||
(unsigned char *)OPENSSL_malloc(sizeof(long) + 1)) != NULL)
|
||||
memset((char *)a->data, 0, sizeof(long) + 1);
|
||||
}
|
||||
if (a->data == NULL) {
|
||||
ASN1err(ASN1_F_ASN1_INTEGER_SET, ERR_R_MALLOC_FAILURE);
|
||||
return (0);
|
||||
}
|
||||
d = v;
|
||||
if (d < 0) {
|
||||
d = -d;
|
||||
a->type = V_ASN1_NEG_INTEGER;
|
||||
}
|
||||
|
||||
for (i = 0; i < sizeof(long); i++) {
|
||||
if (d == 0)
|
||||
break;
|
||||
buf[i] = (int)d & 0xff;
|
||||
d >>= 8;
|
||||
}
|
||||
j = 0;
|
||||
for (k = i - 1; k >= 0; k--)
|
||||
a->data[j++] = buf[k];
|
||||
a->length = j;
|
||||
return (1);
|
||||
return ASN1_INTEGER_set_int64(a, v);
|
||||
}
|
||||
|
||||
long ASN1_INTEGER_get(const ASN1_INTEGER *a)
|
||||
{
|
||||
int neg = 0, i;
|
||||
long r = 0;
|
||||
|
||||
int i;
|
||||
int64_t r;
|
||||
if (a == NULL)
|
||||
return (0L);
|
||||
i = a->type;
|
||||
if (i == V_ASN1_NEG_INTEGER)
|
||||
neg = 1;
|
||||
else if (i != V_ASN1_INTEGER)
|
||||
return -1;
|
||||
|
||||
if (a->length > (int)sizeof(long)) {
|
||||
/* hmm... a bit ugly, return all ones */
|
||||
return -1;
|
||||
}
|
||||
if (a->data == NULL)
|
||||
return 0;
|
||||
|
||||
for (i = 0; i < a->length; i++) {
|
||||
r <<= 8;
|
||||
r |= (unsigned char)a->data[i];
|
||||
}
|
||||
if (neg)
|
||||
r = -r;
|
||||
return (r);
|
||||
i = ASN1_INTEGER_get_int64(&r, a);
|
||||
if (i == 0)
|
||||
return -1;
|
||||
if (r > LONG_MAX || r < LONG_MIN)
|
||||
return -1;
|
||||
return (long)r;
|
||||
}
|
||||
|
||||
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
|
||||
{
|
||||
ASN1_INTEGER *ret;
|
||||
int len, j;
|
||||
|
||||
if (ai == NULL)
|
||||
ret = M_ASN1_INTEGER_new();
|
||||
else
|
||||
ret = ai;
|
||||
if (ret == NULL) {
|
||||
ASN1err(ASN1_F_BN_TO_ASN1_INTEGER, ERR_R_NESTED_ASN1_ERROR);
|
||||
goto err;
|
||||
}
|
||||
if (BN_is_negative(bn) && !BN_is_zero(bn))
|
||||
ret->type = V_ASN1_NEG_INTEGER;
|
||||
else
|
||||
ret->type = V_ASN1_INTEGER;
|
||||
j = BN_num_bits(bn);
|
||||
len = ((j == 0) ? 0 : ((j / 8) + 1));
|
||||
if (ret->length < len + 4) {
|
||||
unsigned char *new_data = OPENSSL_realloc(ret->data, len + 4);
|
||||
if (!new_data) {
|
||||
ASN1err(ASN1_F_BN_TO_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
ret->data = new_data;
|
||||
}
|
||||
ret->length = BN_bn2bin(bn, ret->data);
|
||||
/* Correct zero case */
|
||||
if (!ret->length) {
|
||||
ret->data[0] = 0;
|
||||
ret->length = 1;
|
||||
}
|
||||
return (ret);
|
||||
err:
|
||||
if (ret != ai)
|
||||
M_ASN1_INTEGER_free(ret);
|
||||
return (NULL);
|
||||
return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
|
||||
}
|
||||
|
||||
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
|
||||
{
|
||||
BIGNUM *ret;
|
||||
|
||||
if ((ret = BN_bin2bn(ai->data, ai->length, bn)) == NULL)
|
||||
ASN1err(ASN1_F_ASN1_INTEGER_TO_BN, ASN1_R_BN_LIB);
|
||||
else if (ai->type == V_ASN1_NEG_INTEGER)
|
||||
BN_set_negative(ret, 1);
|
||||
return (ret);
|
||||
return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
|
||||
}
|
||||
|
||||
IMPLEMENT_STACK_OF(ASN1_INTEGER)
|
||||
int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
|
||||
{
|
||||
return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
|
||||
}
|
||||
|
||||
int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
|
||||
{
|
||||
return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
|
||||
}
|
||||
|
||||
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
|
||||
{
|
||||
return ASN1_ENUMERATED_set_int64(a, v);
|
||||
}
|
||||
|
||||
long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
|
||||
{
|
||||
int i;
|
||||
int64_t r;
|
||||
if (a == NULL)
|
||||
return 0;
|
||||
if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
|
||||
return -1;
|
||||
if (a->length > (int)sizeof(long))
|
||||
return 0xffffffffL;
|
||||
i = ASN1_ENUMERATED_get_int64(&r, a);
|
||||
if (i == 0)
|
||||
return -1;
|
||||
if (r > LONG_MAX || r < LONG_MIN)
|
||||
return -1;
|
||||
return (long)r;
|
||||
}
|
||||
|
||||
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
|
||||
{
|
||||
return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
|
||||
}
|
||||
|
||||
BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
|
||||
{
|
||||
return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
|
||||
}
|
||||
|
||||
/* Internal functions used by x_int64.c */
|
||||
int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len)
|
||||
{
|
||||
unsigned char buf[sizeof(uint64_t)];
|
||||
size_t buflen;
|
||||
|
||||
buflen = c2i_ibuf(NULL, NULL, *pp, len);
|
||||
if (buflen == 0)
|
||||
return 0;
|
||||
if (buflen > sizeof(uint64_t)) {
|
||||
ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE);
|
||||
return 0;
|
||||
}
|
||||
(void)c2i_ibuf(buf, neg, *pp, len);
|
||||
return asn1_get_uint64(ret, buf, buflen);
|
||||
}
|
||||
|
||||
int i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
|
||||
{
|
||||
unsigned char buf[sizeof(uint64_t)];
|
||||
size_t off;
|
||||
|
||||
off = asn1_put_uint64(buf, r);
|
||||
return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
|
||||
}
|
||||
|
||||
IMPLEMENT_ASN1_SET_OF(ASN1_INTEGER)
|
||||
|
||||
Reference in New Issue
Block a user