Import OpenSSL 1.1.0f
This commit is contained in:
@@ -2,11 +2,11 @@
|
||||
|
||||
=head1 NAME
|
||||
|
||||
EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate,
|
||||
EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate,
|
||||
EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate,
|
||||
EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length,
|
||||
EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit,
|
||||
EVP_CIPHER_CTX_new, EVP_CIPHER_CTX_reset, EVP_CIPHER_CTX_free,
|
||||
EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex,
|
||||
EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex,
|
||||
EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex,
|
||||
EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_EncryptInit,
|
||||
EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal,
|
||||
EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
|
||||
EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid,
|
||||
@@ -16,33 +16,43 @@ EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
|
||||
EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
|
||||
EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
|
||||
EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
|
||||
EVP_CIPHER_CTX_set_padding, EVP_enc_null, EVP_des_cbc, EVP_des_ecb,
|
||||
EVP_CIPHER_CTX_set_padding, EVP_enc_null, EVP_des_cbc, EVP_des_ecb,
|
||||
EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc, EVP_des_ede, EVP_des_ede_ofb,
|
||||
EVP_des_ede_cfb, EVP_des_ede3_cbc, EVP_des_ede3, EVP_des_ede3_ofb,
|
||||
EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_idea_cbc,
|
||||
EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_idea_cbc, EVP_rc2_cbc,
|
||||
EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_rc4_hmac_md5,
|
||||
EVP_idea_cbc, EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_rc2_cbc,
|
||||
EVP_rc2_ecb, EVP_rc2_cfb, EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc,
|
||||
EVP_bf_cbc, EVP_bf_ecb, EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc,
|
||||
EVP_cast5_ecb, EVP_cast5_cfb, EVP_cast5_ofb, EVP_rc5_32_12_16_cbc,
|
||||
EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb,
|
||||
EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm, EVP_aes_128_ccm,
|
||||
EVP_aes_192_ccm, EVP_aes_256_ccm - EVP cipher routines
|
||||
EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb,
|
||||
EVP_aes_128_cbc, EVP_aes_128_ecb, EVP_aes_128_cfb, EVP_aes_128_ofb,
|
||||
EVP_aes_192_cbc, EVP_aes_192_ecb, EVP_aes_192_cfb, EVP_aes_192_ofb,
|
||||
EVP_aes_256_cbc, EVP_aes_256_ecb, EVP_aes_256_cfb, EVP_aes_256_ofb,
|
||||
EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm,
|
||||
EVP_aes_128_ccm, EVP_aes_192_ccm, EVP_aes_256_ccm,
|
||||
EVP_aes_128_cbc_hmac_sha1, EVP_aes_256_cbc_hmac_sha1,
|
||||
EVP_aes_128_cbc_hmac_sha256, EVP_aes_256_cbc_hmac_sha256
|
||||
EVP_chacha20, EVP_chacha20_poly1305 - EVP cipher routines
|
||||
|
||||
=head1 SYNOPSIS
|
||||
|
||||
=for comment generic
|
||||
|
||||
#include <openssl/evp.h>
|
||||
|
||||
void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);
|
||||
EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
|
||||
int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx);
|
||||
void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);
|
||||
|
||||
int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
||||
ENGINE *impl, unsigned char *key, unsigned char *iv);
|
||||
ENGINE *impl, unsigned char *key, unsigned char *iv);
|
||||
int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
||||
int *outl, unsigned char *in, int inl);
|
||||
int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
||||
int *outl);
|
||||
|
||||
int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
||||
ENGINE *impl, unsigned char *key, unsigned char *iv);
|
||||
ENGINE *impl, unsigned char *key, unsigned char *iv);
|
||||
int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
||||
int *outl, unsigned char *in, int inl);
|
||||
int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
|
||||
@@ -73,30 +83,29 @@ EVP_aes_192_ccm, EVP_aes_256_ccm - EVP cipher routines
|
||||
int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
|
||||
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
|
||||
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
|
||||
int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);
|
||||
|
||||
const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
|
||||
#define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
|
||||
#define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))
|
||||
const EVP_CIPHER *EVP_get_cipherbynid(int nid);
|
||||
const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a);
|
||||
|
||||
#define EVP_CIPHER_nid(e) ((e)->nid)
|
||||
#define EVP_CIPHER_block_size(e) ((e)->block_size)
|
||||
#define EVP_CIPHER_key_length(e) ((e)->key_len)
|
||||
#define EVP_CIPHER_iv_length(e) ((e)->iv_len)
|
||||
#define EVP_CIPHER_flags(e) ((e)->flags)
|
||||
#define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE)
|
||||
int EVP_CIPHER_nid(const EVP_CIPHER *e);
|
||||
int EVP_CIPHER_block_size(const EVP_CIPHER *e);
|
||||
int EVP_CIPHER_key_length(const EVP_CIPHER *e)
|
||||
int EVP_CIPHER_key_length(const EVP_CIPHER *e);
|
||||
int EVP_CIPHER_iv_length(const EVP_CIPHER *e);
|
||||
unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e);
|
||||
unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e);
|
||||
int EVP_CIPHER_type(const EVP_CIPHER *ctx);
|
||||
|
||||
#define EVP_CIPHER_CTX_cipher(e) ((e)->cipher)
|
||||
#define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid)
|
||||
#define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size)
|
||||
#define EVP_CIPHER_CTX_key_length(e) ((e)->key_len)
|
||||
#define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len)
|
||||
#define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
|
||||
#define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
|
||||
#define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
|
||||
#define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags)
|
||||
#define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE)
|
||||
const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
|
||||
int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
|
||||
int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
|
||||
int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
|
||||
int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
|
||||
void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
|
||||
void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data);
|
||||
int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx);
|
||||
int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);
|
||||
|
||||
int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
|
||||
int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
|
||||
@@ -106,10 +115,16 @@ EVP_aes_192_ccm, EVP_aes_256_ccm - EVP cipher routines
|
||||
The EVP cipher routines are a high level interface to certain
|
||||
symmetric ciphers.
|
||||
|
||||
EVP_CIPHER_CTX_init() initializes cipher contex B<ctx>.
|
||||
EVP_CIPHER_CTX_new() creates a cipher context.
|
||||
|
||||
EVP_CIPHER_CTX_free() clears all information from a cipher context
|
||||
and free up any allocated memory associate with it, including B<ctx>
|
||||
itself. This function should be called after all operations using a
|
||||
cipher are complete so sensitive information does not remain in
|
||||
memory.
|
||||
|
||||
EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption
|
||||
with cipher B<type> from ENGINE B<impl>. B<ctx> must be initialized
|
||||
with cipher B<type> from ENGINE B<impl>. B<ctx> must be created
|
||||
before calling this function. B<type> is normally supplied
|
||||
by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the
|
||||
default implementation is used. B<key> is the symmetric key to use
|
||||
@@ -126,11 +141,14 @@ multiple times to encrypt successive blocks of data. The amount
|
||||
of data written depends on the block alignment of the encrypted data:
|
||||
as a result the amount of data written may be anything from zero bytes
|
||||
to (inl + cipher_block_size - 1) so B<out> should contain sufficient
|
||||
room. The actual number of bytes written is placed in B<outl>.
|
||||
room. The actual number of bytes written is placed in B<outl>. It also
|
||||
checks if B<in> and B<out> are partially overlapping, and if they are
|
||||
0 is returned to indicate failure.
|
||||
|
||||
If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts
|
||||
the "final" data, that is any data that remains in a partial block.
|
||||
It uses L<standard block padding|/NOTES> (aka PKCS padding). The encrypted
|
||||
It uses standard block padding (aka PKCS padding) as described in
|
||||
the NOTES section, below. The encrypted
|
||||
final data is written to B<out> which should have sufficient space for
|
||||
one cipher block. The number of bytes written is placed in B<outl>. After
|
||||
this function is called the encryption operation is finished and no further
|
||||
@@ -138,7 +156,7 @@ calls to EVP_EncryptUpdate() should be made.
|
||||
|
||||
If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more
|
||||
data and it will return an error if any data remains in a partial block:
|
||||
that is if the total data length is not a multiple of the block size.
|
||||
that is if the total data length is not a multiple of the block size.
|
||||
|
||||
EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the
|
||||
corresponding decryption operations. EVP_DecryptFinal() will return an
|
||||
@@ -155,13 +173,14 @@ performed depends on the value of the B<enc> parameter. It should be set
|
||||
to 1 for encryption, 0 for decryption and -1 to leave the value unchanged
|
||||
(the actual value of 'enc' being supplied in a previous call).
|
||||
|
||||
EVP_CIPHER_CTX_cleanup() clears all information from a cipher context
|
||||
and free up any allocated memory associate with it. It should be called
|
||||
after all operations using a cipher are complete so sensitive information
|
||||
does not remain in memory.
|
||||
EVP_CIPHER_CTX_reset() clears all information from a cipher context
|
||||
and free up any allocated memory associate with it, except the B<ctx>
|
||||
itself. This function should be called anytime B<ctx> is to be reused
|
||||
for another EVP_CipherInit() / EVP_CipherUpdate() / EVP_CipherFinal()
|
||||
series of calls.
|
||||
|
||||
EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a
|
||||
similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex and
|
||||
similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex() and
|
||||
EVP_CipherInit_ex() except the B<ctx> parameter does not need to be
|
||||
initialized and they always use the default cipher implementation.
|
||||
|
||||
@@ -180,12 +199,14 @@ passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure. The actual NID
|
||||
value is an internal value which may not have a corresponding OBJECT
|
||||
IDENTIFIER.
|
||||
|
||||
EVP_CIPHER_CTX_set_padding() enables or disables padding. By default
|
||||
encryption operations are padded using standard block padding and the
|
||||
padding is checked and removed when decrypting. If the B<pad> parameter
|
||||
is zero then no padding is performed, the total amount of data encrypted
|
||||
or decrypted must then be a multiple of the block size or an error will
|
||||
occur.
|
||||
EVP_CIPHER_CTX_set_padding() enables or disables padding. This
|
||||
function should be called after the context is set up for encryption
|
||||
or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or
|
||||
EVP_CipherInit_ex(). By default encryption operations are padded using
|
||||
standard block padding and the padding is checked and removed when
|
||||
decrypting. If the B<pad> parameter is zero then no padding is
|
||||
performed, the total amount of data encrypted or decrypted must then
|
||||
be a multiple of the block size or an error will occur.
|
||||
|
||||
EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
|
||||
length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
|
||||
@@ -205,7 +226,7 @@ B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers.
|
||||
|
||||
EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
|
||||
size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
|
||||
structure. The constant B<EVP_MAX_IV_LENGTH> is also the maximum block
|
||||
structure. The constant B<EVP_MAX_BLOCK_LENGTH> is also the maximum block
|
||||
length for all ciphers.
|
||||
|
||||
EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed
|
||||
@@ -246,6 +267,9 @@ and set.
|
||||
|
||||
=head1 RETURN VALUES
|
||||
|
||||
EVP_CIPHER_CTX_new() returns a pointer to a newly created
|
||||
B<EVP_CIPHER_CTX> for success and B<NULL> for failure.
|
||||
|
||||
EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex()
|
||||
return 1 for success and 0 for failure.
|
||||
|
||||
@@ -255,7 +279,7 @@ EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.
|
||||
EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure.
|
||||
EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.
|
||||
|
||||
EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for failure.
|
||||
EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure.
|
||||
|
||||
EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
|
||||
return an B<EVP_CIPHER> structure or NULL on error.
|
||||
@@ -278,8 +302,8 @@ OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.
|
||||
|
||||
EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure.
|
||||
|
||||
EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return 1 for
|
||||
success or zero for failure.
|
||||
EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater
|
||||
than zero for success and zero or a negative number.
|
||||
|
||||
=head1 CIPHER LISTING
|
||||
|
||||
@@ -291,84 +315,114 @@ All algorithms have a fixed key length unless otherwise stated.
|
||||
|
||||
Null cipher: does nothing.
|
||||
|
||||
=item EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void)
|
||||
=item EVP_aes_128_cbc(), EVP_aes_128_ecb(), EVP_aes_128_cfb(), EVP_aes_128_ofb()
|
||||
|
||||
DES in CBC, ECB, CFB and OFB modes respectively.
|
||||
AES with a 128-bit key in CBC, ECB, CFB and OFB modes respectively.
|
||||
|
||||
=item EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void), EVP_des_ede_cfb(void)
|
||||
=item EVP_aes_192_cbc(), EVP_aes_192_ecb(), EVP_aes_192_cfb(), EVP_aes_192_ofb()
|
||||
|
||||
AES with a 192-bit key in CBC, ECB, CFB and OFB modes respectively.
|
||||
|
||||
=item EVP_aes_256_cbc(), EVP_aes_256_ecb(), EVP_aes_256_cfb(), EVP_aes_256_ofb()
|
||||
|
||||
AES with a 256-bit key in CBC, ECB, CFB and OFB modes respectively.
|
||||
|
||||
=item EVP_des_cbc(), EVP_des_ecb(), EVP_des_cfb(), EVP_des_ofb()
|
||||
|
||||
DES in CBC, ECB, CFB and OFB modes respectively.
|
||||
|
||||
=item EVP_des_ede_cbc(), EVP_des_ede(), EVP_des_ede_ofb(), EVP_des_ede_cfb()
|
||||
|
||||
Two key triple DES in CBC, ECB, CFB and OFB modes respectively.
|
||||
|
||||
=item EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void), EVP_des_ede3_cfb(void)
|
||||
=item EVP_des_ede3_cbc(), EVP_des_ede3(), EVP_des_ede3_ofb(), EVP_des_ede3_cfb()
|
||||
|
||||
Three key triple DES in CBC, ECB, CFB and OFB modes respectively.
|
||||
|
||||
=item EVP_desx_cbc(void)
|
||||
=item EVP_desx_cbc()
|
||||
|
||||
DESX algorithm in CBC mode.
|
||||
|
||||
=item EVP_rc4(void)
|
||||
=item EVP_rc4()
|
||||
|
||||
RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.
|
||||
|
||||
=item EVP_rc4_40(void)
|
||||
=item EVP_rc4_40()
|
||||
|
||||
RC4 stream cipher with 40 bit key length. This is obsolete and new code should use EVP_rc4()
|
||||
RC4 stream cipher with 40 bit key length.
|
||||
This is obsolete and new code should use EVP_rc4()
|
||||
and the EVP_CIPHER_CTX_set_key_length() function.
|
||||
|
||||
=item EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void), EVP_idea_ofb(void), EVP_idea_cbc(void)
|
||||
=item EVP_idea_cbc() EVP_idea_ecb(), EVP_idea_cfb(), EVP_idea_ofb()
|
||||
|
||||
IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
|
||||
|
||||
=item EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void)
|
||||
=item EVP_rc2_cbc(), EVP_rc2_ecb(), EVP_rc2_cfb(), EVP_rc2_ofb()
|
||||
|
||||
RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
|
||||
length cipher with an additional parameter called "effective key bits" or "effective key length".
|
||||
By default both are set to 128 bits.
|
||||
|
||||
=item EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)
|
||||
=item EVP_rc2_40_cbc(), EVP_rc2_64_cbc()
|
||||
|
||||
RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits.
|
||||
These are obsolete and new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and
|
||||
EVP_CIPHER_CTX_ctrl() to set the key length and effective key length.
|
||||
|
||||
=item EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void);
|
||||
=item EVP_bf_cbc(), EVP_bf_ecb(), EVP_bf_cfb(), EVP_bf_ofb()
|
||||
|
||||
Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
|
||||
length cipher.
|
||||
|
||||
=item EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), EVP_cast5_ofb(void)
|
||||
=item EVP_cast5_cbc(), EVP_cast5_ecb(), EVP_cast5_cfb(), EVP_cast5_ofb()
|
||||
|
||||
CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
|
||||
length cipher.
|
||||
|
||||
=item EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)
|
||||
=item EVP_rc5_32_12_16_cbc(), EVP_rc5_32_12_16_ecb(), EVP_rc5_32_12_16_cfb(), EVP_rc5_32_12_16_ofb()
|
||||
|
||||
RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length
|
||||
cipher with an additional "number of rounds" parameter. By default the key length is set to 128
|
||||
bits and 12 rounds.
|
||||
|
||||
=item EVP_aes_128_gcm(void), EVP_aes_192_gcm(void), EVP_aes_256_gcm(void)
|
||||
=item EVP_aes_128_gcm(), EVP_aes_192_gcm(), EVP_aes_256_gcm()
|
||||
|
||||
AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respectively.
|
||||
These ciphers require additional control operations to function correctly: see
|
||||
L<GCM mode> section below for details.
|
||||
the L</GCM and OCB Modes> section below for details.
|
||||
|
||||
=item EVP_aes_128_ccm(void), EVP_aes_192_ccm(void), EVP_aes_256_ccm(void)
|
||||
=item EVP_aes_128_ocb(void), EVP_aes_192_ocb(void), EVP_aes_256_ocb(void)
|
||||
|
||||
Offset Codebook Mode (OCB) for 128, 192 and 256 bit keys respectively.
|
||||
These ciphers require additional control operations to function correctly: see
|
||||
the L</GCM and OCB Modes> section below for details.
|
||||
|
||||
=item EVP_aes_128_ccm(), EVP_aes_192_ccm(), EVP_aes_256_ccm()
|
||||
|
||||
AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys respectively.
|
||||
These ciphers require additional control operations to function correctly: see
|
||||
CCM mode section below for details.
|
||||
|
||||
=item EVP_chacha20()
|
||||
|
||||
The ChaCha20 stream cipher. The key length is 256 bits, the IV is 96 bits long.
|
||||
|
||||
=item EVP_chacha20_poly1305()
|
||||
|
||||
Authenticated encryption with ChaCha20-Poly1305. Like EVP_chacha20() the key is
|
||||
256 bits and the IV is 96 bits. This supports additional authenticated
|
||||
data (AAD) and produces a 128 bit authentication tag. See the
|
||||
L</GCM and OCB Modes> section for more information.
|
||||
|
||||
=back
|
||||
|
||||
=head1 GCM Mode
|
||||
=head1 GCM and OCB Modes
|
||||
|
||||
For GCM mode ciphers the behaviour of the EVP interface is subtly altered and
|
||||
several GCM specific ctrl operations are supported.
|
||||
For GCM and OCB mode ciphers the behaviour of the EVP interface is subtly
|
||||
altered and several additional ctrl operations are supported.
|
||||
|
||||
To specify any additional authenticated data (AAD) a call to EVP_CipherUpdate(),
|
||||
EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output
|
||||
EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output
|
||||
parameter B<out> set to B<NULL>.
|
||||
|
||||
When decrypting the return value of EVP_DecryptFinal() or EVP_CipherFinal()
|
||||
@@ -376,42 +430,48 @@ indicates if the operation was successful. If it does not indicate success
|
||||
the authentication operation has failed and any output data B<MUST NOT>
|
||||
be used as it is corrupted.
|
||||
|
||||
The following ctrls are supported in GCM mode:
|
||||
The following ctrls are supported in both GCM and OCB modes:
|
||||
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, ivlen, NULL);
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
|
||||
|
||||
Sets the GCM IV length: this call can only be made before specifying an IV. If
|
||||
not called a default IV length is used (96 bits for AES).
|
||||
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, taglen, tag);
|
||||
Sets the IV length: this call can only be made before specifying an IV. If
|
||||
not called a default IV length is used. For GCM AES and OCB AES the default is
|
||||
12 (i.e. 96 bits). For OCB mode the maximum is 15.
|
||||
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag);
|
||||
|
||||
Writes B<taglen> bytes of the tag value to the buffer indicated by B<tag>.
|
||||
This call can only be made when encrypting data and B<after> all data has been
|
||||
processed (e.g. after an EVP_EncryptFinal() call).
|
||||
processed (e.g. after an EVP_EncryptFinal() call). For OCB mode the taglen must
|
||||
either be 16 or the value previously set via EVP_CTRL_OCB_SET_TAGLEN.
|
||||
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, taglen, tag);
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
|
||||
|
||||
Sets the expected tag to B<taglen> bytes from B<tag>. This call is only legal
|
||||
when decrypting data and must be made B<before> any data is processed (e.g.
|
||||
before any EVP_DecryptUpdate() call).
|
||||
before any EVP_DecryptUpdate() call). For OCB mode the taglen must
|
||||
either be 16 or the value previously set via EVP_CTRL_AEAD_SET_TAG.
|
||||
|
||||
See L<EXAMPLES> below for an example of the use of GCM mode.
|
||||
In OCB mode calling this with B<tag> set to NULL sets the tag length. The tag
|
||||
length can only be set before specifying an IV. If not called a default tag
|
||||
length is used. For OCB AES the default is 16 (i.e. 128 bits). This is also the
|
||||
maximum tag length for OCB.
|
||||
|
||||
=head1 CCM Mode
|
||||
|
||||
The behaviour of CCM mode ciphers is similar to CCM mode but with a few
|
||||
The behaviour of CCM mode ciphers is similar to GCM mode but with a few
|
||||
additional requirements and different ctrl values.
|
||||
|
||||
Like GCM mode any additional authenticated data (AAD) is passed by calling
|
||||
EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output
|
||||
Like GCM and OCB modes any additional authenticated data (AAD) is passed by calling
|
||||
EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output
|
||||
parameter B<out> set to B<NULL>. Additionally the total plaintext or ciphertext
|
||||
length B<MUST> be passed to EVP_CipherUpdate(), EVP_EncryptUpdate() or
|
||||
EVP_DecryptUpdate() with the output and input parameters (B<in> and B<out>)
|
||||
EVP_DecryptUpdate() with the output and input parameters (B<in> and B<out>)
|
||||
set to B<NULL> and the length passed in the B<inl> parameter.
|
||||
|
||||
The following ctrls are supported in CCM mode:
|
||||
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, taglen, tag);
|
||||
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
|
||||
|
||||
This call is made to set the expected B<CCM> tag value when decrypting or
|
||||
the length of the tag (with the B<tag> parameter set to NULL) when encrypting.
|
||||
@@ -422,14 +482,12 @@ used (12 for AES).
|
||||
|
||||
Sets the CCM B<L> value. If not set a default is used (8 for AES).
|
||||
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, ivlen, NULL);
|
||||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
|
||||
|
||||
Sets the CCM nonce (IV) length: this call can only be made before specifying
|
||||
an nonce value. The nonce length is given by B<15 - L> so it is 7 by default
|
||||
for AES.
|
||||
|
||||
|
||||
|
||||
=head1 NOTES
|
||||
|
||||
Where possible the B<EVP> interface to symmetric ciphers should be used in
|
||||
@@ -439,7 +497,7 @@ B<EVP> interface will ensure the use of platform specific cryptographic
|
||||
acceleration such as AES-NI (the low level interfaces do not provide the
|
||||
guarantee).
|
||||
|
||||
PKCS padding works by adding B<n> padding bytes of value B<n> to make the total
|
||||
PKCS padding works by adding B<n> padding bytes of value B<n> to make the total
|
||||
length of the encrypted data a multiple of the block size. Padding is always
|
||||
added so if the data is already a multiple of the block size B<n> will equal
|
||||
the block size. For example if the block size is 8 and 11 bytes are to be
|
||||
@@ -462,6 +520,8 @@ EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
|
||||
EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an
|
||||
existing context without allocating and freeing it up on each call.
|
||||
|
||||
EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros.
|
||||
|
||||
=head1 BUGS
|
||||
|
||||
For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is
|
||||
@@ -469,7 +529,7 @@ a limitation of the current RC5 code rather than the EVP interface.
|
||||
|
||||
EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with
|
||||
default key lengths. If custom ciphers exceed these values the results are
|
||||
unpredictable. This is because it has become standard practice to define a
|
||||
unpredictable. This is because it has become standard practice to define a
|
||||
generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes.
|
||||
|
||||
The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested
|
||||
@@ -480,50 +540,50 @@ for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.
|
||||
Encrypt a string using IDEA:
|
||||
|
||||
int do_crypt(char *outfile)
|
||||
{
|
||||
unsigned char outbuf[1024];
|
||||
int outlen, tmplen;
|
||||
/* Bogus key and IV: we'd normally set these from
|
||||
* another source.
|
||||
*/
|
||||
unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
|
||||
unsigned char iv[] = {1,2,3,4,5,6,7,8};
|
||||
char intext[] = "Some Crypto Text";
|
||||
EVP_CIPHER_CTX ctx;
|
||||
FILE *out;
|
||||
{
|
||||
unsigned char outbuf[1024];
|
||||
int outlen, tmplen;
|
||||
/* Bogus key and IV: we'd normally set these from
|
||||
* another source.
|
||||
*/
|
||||
unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
|
||||
unsigned char iv[] = {1,2,3,4,5,6,7,8};
|
||||
char intext[] = "Some Crypto Text";
|
||||
EVP_CIPHER_CTX *ctx;
|
||||
FILE *out;
|
||||
|
||||
EVP_CIPHER_CTX_init(&ctx);
|
||||
EVP_EncryptInit_ex(&ctx, EVP_idea_cbc(), NULL, key, iv);
|
||||
ctx = EVP_CIPHER_CTX_new();
|
||||
EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv);
|
||||
|
||||
if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
|
||||
{
|
||||
/* Error */
|
||||
return 0;
|
||||
}
|
||||
/* Buffer passed to EVP_EncryptFinal() must be after data just
|
||||
* encrypted to avoid overwriting it.
|
||||
*/
|
||||
if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
|
||||
{
|
||||
/* Error */
|
||||
return 0;
|
||||
}
|
||||
outlen += tmplen;
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
/* Need binary mode for fopen because encrypted data is
|
||||
* binary data. Also cannot use strlen() on it because
|
||||
* it wont be null terminated and may contain embedded
|
||||
* nulls.
|
||||
*/
|
||||
out = fopen(outfile, "wb");
|
||||
fwrite(outbuf, 1, outlen, out);
|
||||
fclose(out);
|
||||
return 1;
|
||||
}
|
||||
if(!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext)))
|
||||
{
|
||||
/* Error */
|
||||
return 0;
|
||||
}
|
||||
/* Buffer passed to EVP_EncryptFinal() must be after data just
|
||||
* encrypted to avoid overwriting it.
|
||||
*/
|
||||
if(!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen))
|
||||
{
|
||||
/* Error */
|
||||
return 0;
|
||||
}
|
||||
outlen += tmplen;
|
||||
EVP_CIPHER_CTX_free(ctx);
|
||||
/* Need binary mode for fopen because encrypted data is
|
||||
* binary data. Also cannot use strlen() on it because
|
||||
* it won't be null terminated and may contain embedded
|
||||
* nulls.
|
||||
*/
|
||||
out = fopen(outfile, "wb");
|
||||
fwrite(outbuf, 1, outlen, out);
|
||||
fclose(out);
|
||||
return 1;
|
||||
}
|
||||
|
||||
The ciphertext from the above example can be decrypted using the B<openssl>
|
||||
utility with the command line (shown on two lines for clarity):
|
||||
|
||||
|
||||
openssl idea -d <filename
|
||||
-K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708
|
||||
|
||||
@@ -531,64 +591,72 @@ General encryption and decryption function example using FILE I/O and AES128
|
||||
with a 128-bit key:
|
||||
|
||||
int do_crypt(FILE *in, FILE *out, int do_encrypt)
|
||||
{
|
||||
/* Allow enough space in output buffer for additional block */
|
||||
unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
|
||||
int inlen, outlen;
|
||||
EVP_CIPHER_CTX ctx;
|
||||
/* Bogus key and IV: we'd normally set these from
|
||||
* another source.
|
||||
*/
|
||||
unsigned char key[] = "0123456789abcdeF";
|
||||
unsigned char iv[] = "1234567887654321";
|
||||
{
|
||||
/* Allow enough space in output buffer for additional block */
|
||||
unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
|
||||
int inlen, outlen;
|
||||
EVP_CIPHER_CTX *ctx;
|
||||
/* Bogus key and IV: we'd normally set these from
|
||||
* another source.
|
||||
*/
|
||||
unsigned char key[] = "0123456789abcdeF";
|
||||
unsigned char iv[] = "1234567887654321";
|
||||
|
||||
/* Don't set key or IV right away; we want to check lengths */
|
||||
EVP_CIPHER_CTX_init(&ctx);
|
||||
EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
|
||||
do_encrypt);
|
||||
OPENSSL_assert(EVP_CIPHER_CTX_key_length(&ctx) == 16);
|
||||
OPENSSL_assert(EVP_CIPHER_CTX_iv_length(&ctx) == 16);
|
||||
/* Don't set key or IV right away; we want to check lengths */
|
||||
ctx = EVP_CIPHER_CTX_new();
|
||||
EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
|
||||
do_encrypt);
|
||||
OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16);
|
||||
OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16);
|
||||
|
||||
/* Now we can set key and IV */
|
||||
EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);
|
||||
/* Now we can set key and IV */
|
||||
EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);
|
||||
|
||||
for(;;)
|
||||
{
|
||||
inlen = fread(inbuf, 1, 1024, in);
|
||||
if(inlen <= 0) break;
|
||||
if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))
|
||||
{
|
||||
/* Error */
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
return 0;
|
||||
}
|
||||
fwrite(outbuf, 1, outlen, out);
|
||||
}
|
||||
if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
|
||||
{
|
||||
/* Error */
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
return 0;
|
||||
}
|
||||
fwrite(outbuf, 1, outlen, out);
|
||||
for(;;)
|
||||
{
|
||||
inlen = fread(inbuf, 1, 1024, in);
|
||||
if (inlen <= 0) break;
|
||||
if(!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen))
|
||||
{
|
||||
/* Error */
|
||||
EVP_CIPHER_CTX_free(ctx);
|
||||
return 0;
|
||||
}
|
||||
fwrite(outbuf, 1, outlen, out);
|
||||
}
|
||||
if(!EVP_CipherFinal_ex(ctx, outbuf, &outlen))
|
||||
{
|
||||
/* Error */
|
||||
EVP_CIPHER_CTX_free(ctx);
|
||||
return 0;
|
||||
}
|
||||
fwrite(outbuf, 1, outlen, out);
|
||||
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
return 1;
|
||||
}
|
||||
EVP_CIPHER_CTX_free(ctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
L<evp(3)|evp(3)>
|
||||
L<evp(7)>
|
||||
|
||||
=head1 HISTORY
|
||||
|
||||
EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(),
|
||||
EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex(),
|
||||
EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding() appeared in
|
||||
OpenSSL 0.9.7.
|
||||
Support for OCB mode was added in OpenSSL 1.1.0
|
||||
|
||||
IDEA appeared in OpenSSL 0.9.7 but was often disabled due to
|
||||
patent concerns; the last patents expired in 2012.
|
||||
B<EVP_CIPHER_CTX> was made opaque in OpenSSL 1.1.0. As a result,
|
||||
EVP_CIPHER_CTX_reset() appeared and EVP_CIPHER_CTX_cleanup()
|
||||
disappeared. EVP_CIPHER_CTX_init() remains as an alias for
|
||||
EVP_CIPHER_CTX_reset().
|
||||
|
||||
=head1 COPYRIGHT
|
||||
|
||||
Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the OpenSSL license (the "License"). You may not use
|
||||
this file except in compliance with the License. You can obtain a copy
|
||||
in the file LICENSE in the source distribution or at
|
||||
L<https://www.openssl.org/source/license.html>.
|
||||
|
||||
=cut
|
||||
|
||||
Reference in New Issue
Block a user