values from 2011-11-12, but in so doing reintroduced string instructions to sysv.S that are not supported on all powerpc variants. This patch properly copies the bounce buffer to destination in C code rather than in asm. I have tested this on powerpc64-linux, powerpc-linux and powerpc-freebsd. Well, the last on powerpc-linux by lying to configure with CC="gcc -m32 -msvr4-struct-return -mlong-double-64" \ CXX="g++ -m32 -msvr4-struct-return -mlong-double-64" \ /src/libffi-current/configure --build=powerpc-freebsd and then make && make CC="gcc -m32" CXX="g++ -m32" \ RUNTESTFLAGS=--target_board=unix/-m32/-msvr4-struct-return/-mlong-double-64\ check
1559 lines
42 KiB
C
1559 lines
42 KiB
C
/* -----------------------------------------------------------------------
|
|
ffi.c - Copyright (C) 2011 Anthony Green
|
|
Copyright (C) 2011 Kyle Moffett
|
|
Copyright (C) 2008 Red Hat, Inc
|
|
Copyright (C) 2007, 2008 Free Software Foundation, Inc
|
|
Copyright (c) 1998 Geoffrey Keating
|
|
|
|
PowerPC Foreign Function Interface
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
``Software''), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
----------------------------------------------------------------------- */
|
|
|
|
#include <ffi.h>
|
|
#include <ffi_common.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
|
|
extern void ffi_closure_SYSV (void);
|
|
extern void FFI_HIDDEN ffi_closure_LINUX64 (void);
|
|
|
|
enum {
|
|
/* The assembly depends on these exact flags. */
|
|
FLAG_RETURNS_SMST = 1 << (31-31), /* Used for FFI_SYSV small structs. */
|
|
FLAG_RETURNS_NOTHING = 1 << (31-30), /* These go in cr7 */
|
|
#ifndef __NO_FPRS__
|
|
FLAG_RETURNS_FP = 1 << (31-29),
|
|
#endif
|
|
FLAG_RETURNS_64BITS = 1 << (31-28),
|
|
|
|
FLAG_RETURNS_128BITS = 1 << (31-27), /* cr6 */
|
|
|
|
FLAG_ARG_NEEDS_COPY = 1 << (31- 7),
|
|
#ifndef __NO_FPRS__
|
|
FLAG_FP_ARGUMENTS = 1 << (31- 6), /* cr1.eq; specified by ABI */
|
|
#endif
|
|
FLAG_4_GPR_ARGUMENTS = 1 << (31- 5),
|
|
FLAG_RETVAL_REFERENCE = 1 << (31- 4)
|
|
};
|
|
|
|
/* About the SYSV ABI. */
|
|
#define ASM_NEEDS_REGISTERS 4
|
|
#define NUM_GPR_ARG_REGISTERS 8
|
|
#ifndef __NO_FPRS__
|
|
# define NUM_FPR_ARG_REGISTERS 8
|
|
#endif
|
|
|
|
/* ffi_prep_args_SYSV is called by the assembly routine once stack space
|
|
has been allocated for the function's arguments.
|
|
|
|
The stack layout we want looks like this:
|
|
|
|
| Return address from ffi_call_SYSV 4bytes | higher addresses
|
|
|--------------------------------------------|
|
|
| Previous backchain pointer 4 | stack pointer here
|
|
|--------------------------------------------|<+ <<< on entry to
|
|
| Saved r28-r31 4*4 | | ffi_call_SYSV
|
|
|--------------------------------------------| |
|
|
| GPR registers r3-r10 8*4 | | ffi_call_SYSV
|
|
|--------------------------------------------| |
|
|
| FPR registers f1-f8 (optional) 8*8 | |
|
|
|--------------------------------------------| | stack |
|
|
| Space for copied structures | | grows |
|
|
|--------------------------------------------| | down V
|
|
| Parameters that didn't fit in registers | |
|
|
|--------------------------------------------| | lower addresses
|
|
| Space for callee's LR 4 | |
|
|
|--------------------------------------------| | stack pointer here
|
|
| Current backchain pointer 4 |-/ during
|
|
|--------------------------------------------| <<< ffi_call_SYSV
|
|
|
|
*/
|
|
|
|
void
|
|
ffi_prep_args_SYSV (extended_cif *ecif, unsigned *const stack)
|
|
{
|
|
const unsigned bytes = ecif->cif->bytes;
|
|
const unsigned flags = ecif->cif->flags;
|
|
|
|
typedef union {
|
|
char *c;
|
|
unsigned *u;
|
|
long long *ll;
|
|
float *f;
|
|
double *d;
|
|
} valp;
|
|
|
|
/* 'stacktop' points at the previous backchain pointer. */
|
|
valp stacktop;
|
|
|
|
/* 'gpr_base' points at the space for gpr3, and grows upwards as
|
|
we use GPR registers. */
|
|
valp gpr_base;
|
|
int intarg_count;
|
|
|
|
#ifndef __NO_FPRS__
|
|
/* 'fpr_base' points at the space for fpr1, and grows upwards as
|
|
we use FPR registers. */
|
|
valp fpr_base;
|
|
int fparg_count;
|
|
#endif
|
|
|
|
/* 'copy_space' grows down as we put structures in it. It should
|
|
stay 16-byte aligned. */
|
|
valp copy_space;
|
|
|
|
/* 'next_arg' grows up as we put parameters in it. */
|
|
valp next_arg;
|
|
|
|
int i;
|
|
ffi_type **ptr;
|
|
#ifndef __NO_FPRS__
|
|
double double_tmp;
|
|
#endif
|
|
union {
|
|
void **v;
|
|
char **c;
|
|
signed char **sc;
|
|
unsigned char **uc;
|
|
signed short **ss;
|
|
unsigned short **us;
|
|
unsigned int **ui;
|
|
long long **ll;
|
|
float **f;
|
|
double **d;
|
|
} p_argv;
|
|
size_t struct_copy_size;
|
|
unsigned gprvalue;
|
|
|
|
stacktop.c = (char *) stack + bytes;
|
|
gpr_base.u = stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS;
|
|
intarg_count = 0;
|
|
#ifndef __NO_FPRS__
|
|
fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS;
|
|
fparg_count = 0;
|
|
copy_space.c = ((flags & FLAG_FP_ARGUMENTS) ? fpr_base.c : gpr_base.c);
|
|
#else
|
|
copy_space.c = gpr_base.c;
|
|
#endif
|
|
next_arg.u = stack + 2;
|
|
|
|
/* Check that everything starts aligned properly. */
|
|
FFI_ASSERT (((unsigned long) (char *) stack & 0xF) == 0);
|
|
FFI_ASSERT (((unsigned long) copy_space.c & 0xF) == 0);
|
|
FFI_ASSERT (((unsigned long) stacktop.c & 0xF) == 0);
|
|
FFI_ASSERT ((bytes & 0xF) == 0);
|
|
FFI_ASSERT (copy_space.c >= next_arg.c);
|
|
|
|
/* Deal with return values that are actually pass-by-reference. */
|
|
if (flags & FLAG_RETVAL_REFERENCE)
|
|
{
|
|
*gpr_base.u++ = (unsigned long) (char *) ecif->rvalue;
|
|
intarg_count++;
|
|
}
|
|
|
|
/* Now for the arguments. */
|
|
p_argv.v = ecif->avalue;
|
|
for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
|
|
i > 0;
|
|
i--, ptr++, p_argv.v++)
|
|
{
|
|
unsigned short typenum = (*ptr)->type;
|
|
|
|
/* We may need to handle some values depending on ABI */
|
|
if (ecif->cif->abi == FFI_LINUX_SOFT_FLOAT) {
|
|
if (typenum == FFI_TYPE_FLOAT)
|
|
typenum = FFI_TYPE_UINT32;
|
|
if (typenum == FFI_TYPE_DOUBLE)
|
|
typenum = FFI_TYPE_UINT64;
|
|
if (typenum == FFI_TYPE_LONGDOUBLE)
|
|
typenum = FFI_TYPE_UINT128;
|
|
} else if (ecif->cif->abi != FFI_LINUX) {
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
if (typenum == FFI_TYPE_LONGDOUBLE)
|
|
typenum = FFI_TYPE_STRUCT;
|
|
#endif
|
|
}
|
|
|
|
/* Now test the translated value */
|
|
switch (typenum) {
|
|
#ifndef __NO_FPRS__
|
|
case FFI_TYPE_FLOAT:
|
|
/* With FFI_LINUX_SOFT_FLOAT floats are handled like UINT32. */
|
|
double_tmp = **p_argv.f;
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
|
|
{
|
|
*next_arg.f = (float) double_tmp;
|
|
next_arg.u += 1;
|
|
intarg_count++;
|
|
}
|
|
else
|
|
*fpr_base.d++ = double_tmp;
|
|
fparg_count++;
|
|
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
/* With FFI_LINUX_SOFT_FLOAT doubles are handled like UINT64. */
|
|
double_tmp = **p_argv.d;
|
|
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
|
|
{
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS
|
|
&& intarg_count % 2 != 0)
|
|
{
|
|
intarg_count++;
|
|
next_arg.u++;
|
|
}
|
|
*next_arg.d = double_tmp;
|
|
next_arg.u += 2;
|
|
}
|
|
else
|
|
*fpr_base.d++ = double_tmp;
|
|
fparg_count++;
|
|
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
double_tmp = (*p_argv.d)[0];
|
|
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS - 1)
|
|
{
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS
|
|
&& intarg_count % 2 != 0)
|
|
{
|
|
intarg_count++;
|
|
next_arg.u++;
|
|
}
|
|
*next_arg.d = double_tmp;
|
|
next_arg.u += 2;
|
|
double_tmp = (*p_argv.d)[1];
|
|
*next_arg.d = double_tmp;
|
|
next_arg.u += 2;
|
|
}
|
|
else
|
|
{
|
|
*fpr_base.d++ = double_tmp;
|
|
double_tmp = (*p_argv.d)[1];
|
|
*fpr_base.d++ = double_tmp;
|
|
}
|
|
|
|
fparg_count += 2;
|
|
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
#endif
|
|
#endif /* have FPRs */
|
|
|
|
/*
|
|
* The soft float ABI for long doubles works like this, a long double
|
|
* is passed in four consecutive GPRs if available. A maximum of 2
|
|
* long doubles can be passed in gprs. If we do not have 4 GPRs
|
|
* left, the long double is passed on the stack, 4-byte aligned.
|
|
*/
|
|
case FFI_TYPE_UINT128: {
|
|
unsigned int int_tmp = (*p_argv.ui)[0];
|
|
unsigned int ii;
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3) {
|
|
if (intarg_count < NUM_GPR_ARG_REGISTERS)
|
|
intarg_count += NUM_GPR_ARG_REGISTERS - intarg_count;
|
|
*(next_arg.u++) = int_tmp;
|
|
for (ii = 1; ii < 4; ii++) {
|
|
int_tmp = (*p_argv.ui)[ii];
|
|
*(next_arg.u++) = int_tmp;
|
|
}
|
|
} else {
|
|
*(gpr_base.u++) = int_tmp;
|
|
for (ii = 1; ii < 4; ii++) {
|
|
int_tmp = (*p_argv.ui)[ii];
|
|
*(gpr_base.u++) = int_tmp;
|
|
}
|
|
}
|
|
intarg_count += 4;
|
|
break;
|
|
}
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
if (intarg_count == NUM_GPR_ARG_REGISTERS-1)
|
|
intarg_count++;
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS)
|
|
{
|
|
if (intarg_count % 2 != 0)
|
|
{
|
|
intarg_count++;
|
|
next_arg.u++;
|
|
}
|
|
*next_arg.ll = **p_argv.ll;
|
|
next_arg.u += 2;
|
|
}
|
|
else
|
|
{
|
|
/* whoops: abi states only certain register pairs
|
|
* can be used for passing long long int
|
|
* specifically (r3,r4), (r5,r6), (r7,r8),
|
|
* (r9,r10) and if next arg is long long but
|
|
* not correct starting register of pair then skip
|
|
* until the proper starting register
|
|
*/
|
|
if (intarg_count % 2 != 0)
|
|
{
|
|
intarg_count ++;
|
|
gpr_base.u++;
|
|
}
|
|
*gpr_base.ll++ = **p_argv.ll;
|
|
}
|
|
intarg_count += 2;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
struct_copy_size = ((*ptr)->size + 15) & ~0xF;
|
|
copy_space.c -= struct_copy_size;
|
|
memcpy (copy_space.c, *p_argv.c, (*ptr)->size);
|
|
|
|
gprvalue = (unsigned long) copy_space.c;
|
|
|
|
FFI_ASSERT (copy_space.c > next_arg.c);
|
|
FFI_ASSERT (flags & FLAG_ARG_NEEDS_COPY);
|
|
goto putgpr;
|
|
|
|
case FFI_TYPE_UINT8:
|
|
gprvalue = **p_argv.uc;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT8:
|
|
gprvalue = **p_argv.sc;
|
|
goto putgpr;
|
|
case FFI_TYPE_UINT16:
|
|
gprvalue = **p_argv.us;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT16:
|
|
gprvalue = **p_argv.ss;
|
|
goto putgpr;
|
|
|
|
case FFI_TYPE_INT:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_POINTER:
|
|
|
|
gprvalue = **p_argv.ui;
|
|
|
|
putgpr:
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS)
|
|
*next_arg.u++ = gprvalue;
|
|
else
|
|
*gpr_base.u++ = gprvalue;
|
|
intarg_count++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check that we didn't overrun the stack... */
|
|
FFI_ASSERT (copy_space.c >= next_arg.c);
|
|
FFI_ASSERT (gpr_base.u <= stacktop.u - ASM_NEEDS_REGISTERS);
|
|
/* The assert below is testing that the number of integer arguments agrees
|
|
with the number found in ffi_prep_cif_machdep(). However, intarg_count
|
|
is incremented whenever we place an FP arg on the stack, so account for
|
|
that before our assert test. */
|
|
#ifndef __NO_FPRS__
|
|
if (fparg_count > NUM_FPR_ARG_REGISTERS)
|
|
intarg_count -= fparg_count - NUM_FPR_ARG_REGISTERS;
|
|
FFI_ASSERT (fpr_base.u
|
|
<= stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS);
|
|
#endif
|
|
FFI_ASSERT (flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4);
|
|
}
|
|
|
|
/* About the LINUX64 ABI. */
|
|
enum {
|
|
NUM_GPR_ARG_REGISTERS64 = 8,
|
|
NUM_FPR_ARG_REGISTERS64 = 13
|
|
};
|
|
enum { ASM_NEEDS_REGISTERS64 = 4 };
|
|
|
|
/* ffi_prep_args64 is called by the assembly routine once stack space
|
|
has been allocated for the function's arguments.
|
|
|
|
The stack layout we want looks like this:
|
|
|
|
| Ret addr from ffi_call_LINUX64 8bytes | higher addresses
|
|
|--------------------------------------------|
|
|
| CR save area 8bytes |
|
|
|--------------------------------------------|
|
|
| Previous backchain pointer 8 | stack pointer here
|
|
|--------------------------------------------|<+ <<< on entry to
|
|
| Saved r28-r31 4*8 | | ffi_call_LINUX64
|
|
|--------------------------------------------| |
|
|
| GPR registers r3-r10 8*8 | |
|
|
|--------------------------------------------| |
|
|
| FPR registers f1-f13 (optional) 13*8 | |
|
|
|--------------------------------------------| |
|
|
| Parameter save area | |
|
|
|--------------------------------------------| |
|
|
| TOC save area 8 | |
|
|
|--------------------------------------------| | stack |
|
|
| Linker doubleword 8 | | grows |
|
|
|--------------------------------------------| | down V
|
|
| Compiler doubleword 8 | |
|
|
|--------------------------------------------| | lower addresses
|
|
| Space for callee's LR 8 | |
|
|
|--------------------------------------------| |
|
|
| CR save area 8 | |
|
|
|--------------------------------------------| | stack pointer here
|
|
| Current backchain pointer 8 |-/ during
|
|
|--------------------------------------------| <<< ffi_call_LINUX64
|
|
|
|
*/
|
|
|
|
void FFI_HIDDEN
|
|
ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
|
|
{
|
|
const unsigned long bytes = ecif->cif->bytes;
|
|
const unsigned long flags = ecif->cif->flags;
|
|
|
|
typedef union {
|
|
char *c;
|
|
unsigned long *ul;
|
|
float *f;
|
|
double *d;
|
|
size_t p;
|
|
} valp;
|
|
|
|
/* 'stacktop' points at the previous backchain pointer. */
|
|
valp stacktop;
|
|
|
|
/* 'next_arg' points at the space for gpr3, and grows upwards as
|
|
we use GPR registers, then continues at rest. */
|
|
valp gpr_base;
|
|
valp gpr_end;
|
|
valp rest;
|
|
valp next_arg;
|
|
|
|
/* 'fpr_base' points at the space for fpr3, and grows upwards as
|
|
we use FPR registers. */
|
|
valp fpr_base;
|
|
unsigned int fparg_count;
|
|
|
|
unsigned int i, words, nargs, nfixedargs;
|
|
ffi_type **ptr;
|
|
double double_tmp;
|
|
union {
|
|
void **v;
|
|
char **c;
|
|
signed char **sc;
|
|
unsigned char **uc;
|
|
signed short **ss;
|
|
unsigned short **us;
|
|
signed int **si;
|
|
unsigned int **ui;
|
|
unsigned long **ul;
|
|
float **f;
|
|
double **d;
|
|
} p_argv;
|
|
unsigned long gprvalue;
|
|
#ifdef __STRUCT_PARM_ALIGN__
|
|
unsigned long align;
|
|
#endif
|
|
|
|
stacktop.c = (char *) stack + bytes;
|
|
gpr_base.ul = stacktop.ul - ASM_NEEDS_REGISTERS64 - NUM_GPR_ARG_REGISTERS64;
|
|
gpr_end.ul = gpr_base.ul + NUM_GPR_ARG_REGISTERS64;
|
|
rest.ul = stack + 6 + NUM_GPR_ARG_REGISTERS64;
|
|
fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS64;
|
|
fparg_count = 0;
|
|
next_arg.ul = gpr_base.ul;
|
|
|
|
/* Check that everything starts aligned properly. */
|
|
FFI_ASSERT (((unsigned long) (char *) stack & 0xF) == 0);
|
|
FFI_ASSERT (((unsigned long) stacktop.c & 0xF) == 0);
|
|
FFI_ASSERT ((bytes & 0xF) == 0);
|
|
|
|
/* Deal with return values that are actually pass-by-reference. */
|
|
if (flags & FLAG_RETVAL_REFERENCE)
|
|
*next_arg.ul++ = (unsigned long) (char *) ecif->rvalue;
|
|
|
|
/* Now for the arguments. */
|
|
p_argv.v = ecif->avalue;
|
|
nargs = ecif->cif->nargs;
|
|
nfixedargs = ecif->cif->nfixedargs;
|
|
for (ptr = ecif->cif->arg_types, i = 0;
|
|
i < nargs;
|
|
i++, ptr++, p_argv.v++)
|
|
{
|
|
switch ((*ptr)->type)
|
|
{
|
|
case FFI_TYPE_FLOAT:
|
|
double_tmp = **p_argv.f;
|
|
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
|
|
*fpr_base.d++ = double_tmp;
|
|
else
|
|
*next_arg.f = (float) double_tmp;
|
|
if (++next_arg.ul == gpr_end.ul)
|
|
next_arg.ul = rest.ul;
|
|
fparg_count++;
|
|
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
double_tmp = **p_argv.d;
|
|
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
|
|
*fpr_base.d++ = double_tmp;
|
|
else
|
|
*next_arg.d = double_tmp;
|
|
if (++next_arg.ul == gpr_end.ul)
|
|
next_arg.ul = rest.ul;
|
|
fparg_count++;
|
|
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
double_tmp = (*p_argv.d)[0];
|
|
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
|
|
*fpr_base.d++ = double_tmp;
|
|
else
|
|
*next_arg.d = double_tmp;
|
|
if (++next_arg.ul == gpr_end.ul)
|
|
next_arg.ul = rest.ul;
|
|
fparg_count++;
|
|
double_tmp = (*p_argv.d)[1];
|
|
if (fparg_count < NUM_FPR_ARG_REGISTERS64 && i < nfixedargs)
|
|
*fpr_base.d++ = double_tmp;
|
|
else
|
|
*next_arg.d = double_tmp;
|
|
if (++next_arg.ul == gpr_end.ul)
|
|
next_arg.ul = rest.ul;
|
|
fparg_count++;
|
|
FFI_ASSERT (__LDBL_MANT_DIG__ == 106);
|
|
FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
#ifdef __STRUCT_PARM_ALIGN__
|
|
align = (*ptr)->alignment;
|
|
if (align > __STRUCT_PARM_ALIGN__)
|
|
align = __STRUCT_PARM_ALIGN__;
|
|
if (align > 1)
|
|
next_arg.p = ALIGN (next_arg.p, align);
|
|
#endif
|
|
words = ((*ptr)->size + 7) / 8;
|
|
if (next_arg.ul >= gpr_base.ul && next_arg.ul + words > gpr_end.ul)
|
|
{
|
|
size_t first = gpr_end.c - next_arg.c;
|
|
memcpy (next_arg.c, *p_argv.c, first);
|
|
memcpy (rest.c, *p_argv.c + first, (*ptr)->size - first);
|
|
next_arg.c = rest.c + words * 8 - first;
|
|
}
|
|
else
|
|
{
|
|
char *where = next_arg.c;
|
|
|
|
#ifndef __LITTLE_ENDIAN__
|
|
/* Structures with size less than eight bytes are passed
|
|
left-padded. */
|
|
if ((*ptr)->size < 8)
|
|
where += 8 - (*ptr)->size;
|
|
#endif
|
|
memcpy (where, *p_argv.c, (*ptr)->size);
|
|
next_arg.ul += words;
|
|
if (next_arg.ul == gpr_end.ul)
|
|
next_arg.ul = rest.ul;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_UINT8:
|
|
gprvalue = **p_argv.uc;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT8:
|
|
gprvalue = **p_argv.sc;
|
|
goto putgpr;
|
|
case FFI_TYPE_UINT16:
|
|
gprvalue = **p_argv.us;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT16:
|
|
gprvalue = **p_argv.ss;
|
|
goto putgpr;
|
|
case FFI_TYPE_UINT32:
|
|
gprvalue = **p_argv.ui;
|
|
goto putgpr;
|
|
case FFI_TYPE_INT:
|
|
case FFI_TYPE_SINT32:
|
|
gprvalue = **p_argv.si;
|
|
goto putgpr;
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
case FFI_TYPE_POINTER:
|
|
gprvalue = **p_argv.ul;
|
|
putgpr:
|
|
*next_arg.ul++ = gprvalue;
|
|
if (next_arg.ul == gpr_end.ul)
|
|
next_arg.ul = rest.ul;
|
|
break;
|
|
}
|
|
}
|
|
|
|
FFI_ASSERT (flags & FLAG_4_GPR_ARGUMENTS
|
|
|| (next_arg.ul >= gpr_base.ul
|
|
&& next_arg.ul <= gpr_base.ul + 4));
|
|
}
|
|
|
|
|
|
|
|
/* Perform machine dependent cif processing */
|
|
static ffi_status
|
|
ffi_prep_cif_machdep_core (ffi_cif *cif)
|
|
{
|
|
/* All this is for the SYSV and LINUX64 ABI. */
|
|
ffi_type **ptr;
|
|
unsigned bytes;
|
|
unsigned i, fparg_count = 0, intarg_count = 0;
|
|
unsigned flags = cif->flags;
|
|
unsigned struct_copy_size = 0;
|
|
unsigned type = cif->rtype->type;
|
|
unsigned size = cif->rtype->size;
|
|
|
|
if (cif->abi != FFI_LINUX64)
|
|
{
|
|
/* All the machine-independent calculation of cif->bytes will be wrong.
|
|
Redo the calculation for SYSV. */
|
|
|
|
/* Space for the frame pointer, callee's LR, and the asm's temp regs. */
|
|
bytes = (2 + ASM_NEEDS_REGISTERS) * sizeof (int);
|
|
|
|
/* Space for the GPR registers. */
|
|
bytes += NUM_GPR_ARG_REGISTERS * sizeof (int);
|
|
}
|
|
else
|
|
{
|
|
/* 64-bit ABI. */
|
|
|
|
/* Space for backchain, CR, LR, cc/ld doubleword, TOC and the asm's temp
|
|
regs. */
|
|
bytes = (6 + ASM_NEEDS_REGISTERS64) * sizeof (long);
|
|
|
|
/* Space for the mandatory parm save area and general registers. */
|
|
bytes += 2 * NUM_GPR_ARG_REGISTERS64 * sizeof (long);
|
|
}
|
|
|
|
/* Return value handling. The rules for SYSV are as follows:
|
|
- 32-bit (or less) integer values are returned in gpr3;
|
|
- Structures of size <= 4 bytes also returned in gpr3;
|
|
- 64-bit integer values and structures between 5 and 8 bytes are returned
|
|
in gpr3 and gpr4;
|
|
- Single/double FP values are returned in fpr1;
|
|
- Larger structures are allocated space and a pointer is passed as
|
|
the first argument.
|
|
- long doubles (if not equivalent to double) are returned in
|
|
fpr1,fpr2 for Linux and as for large structs for SysV.
|
|
For LINUX64:
|
|
- integer values in gpr3;
|
|
- Structures/Unions by reference;
|
|
- Single/double FP values in fpr1, long double in fpr1,fpr2.
|
|
- soft-float float/doubles are treated as UINT32/UINT64 respectivley.
|
|
- soft-float long doubles are returned in gpr3-gpr6. */
|
|
/* First translate for softfloat/nonlinux */
|
|
if (cif->abi == FFI_LINUX_SOFT_FLOAT)
|
|
{
|
|
if (type == FFI_TYPE_FLOAT)
|
|
type = FFI_TYPE_UINT32;
|
|
if (type == FFI_TYPE_DOUBLE)
|
|
type = FFI_TYPE_UINT64;
|
|
if (type == FFI_TYPE_LONGDOUBLE)
|
|
type = FFI_TYPE_UINT128;
|
|
}
|
|
else if (cif->abi != FFI_LINUX
|
|
&& cif->abi != FFI_LINUX64)
|
|
{
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
if (type == FFI_TYPE_LONGDOUBLE)
|
|
type = FFI_TYPE_STRUCT;
|
|
#endif
|
|
}
|
|
|
|
switch (type)
|
|
{
|
|
#ifndef __NO_FPRS__
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
flags |= FLAG_RETURNS_128BITS;
|
|
/* Fall through. */
|
|
#endif
|
|
case FFI_TYPE_DOUBLE:
|
|
flags |= FLAG_RETURNS_64BITS;
|
|
/* Fall through. */
|
|
case FFI_TYPE_FLOAT:
|
|
flags |= FLAG_RETURNS_FP;
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_UINT128:
|
|
flags |= FLAG_RETURNS_128BITS;
|
|
/* Fall through. */
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
flags |= FLAG_RETURNS_64BITS;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
/*
|
|
* The final SYSV ABI says that structures smaller or equal 8 bytes
|
|
* are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them
|
|
* in memory.
|
|
*
|
|
* NOTE: The assembly code can safely assume that it just needs to
|
|
* store both r3 and r4 into a 8-byte word-aligned buffer, as
|
|
* we allocate a temporary buffer in ffi_call() if this flag is
|
|
* set.
|
|
*/
|
|
if (cif->abi == FFI_SYSV && size <= 8)
|
|
{
|
|
flags |= FLAG_RETURNS_SMST;
|
|
break;
|
|
}
|
|
intarg_count++;
|
|
flags |= FLAG_RETVAL_REFERENCE;
|
|
/* Fall through. */
|
|
case FFI_TYPE_VOID:
|
|
flags |= FLAG_RETURNS_NOTHING;
|
|
break;
|
|
|
|
default:
|
|
/* Returns 32-bit integer, or similar. Nothing to do here. */
|
|
break;
|
|
}
|
|
|
|
if (cif->abi != FFI_LINUX64)
|
|
/* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the
|
|
first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest
|
|
goes on the stack. Structures and long doubles (if not equivalent
|
|
to double) are passed as a pointer to a copy of the structure.
|
|
Stuff on the stack needs to keep proper alignment. */
|
|
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
|
|
{
|
|
unsigned short typenum = (*ptr)->type;
|
|
|
|
/* We may need to handle some values depending on ABI */
|
|
if (cif->abi == FFI_LINUX_SOFT_FLOAT) {
|
|
if (typenum == FFI_TYPE_FLOAT)
|
|
typenum = FFI_TYPE_UINT32;
|
|
if (typenum == FFI_TYPE_DOUBLE)
|
|
typenum = FFI_TYPE_UINT64;
|
|
if (typenum == FFI_TYPE_LONGDOUBLE)
|
|
typenum = FFI_TYPE_UINT128;
|
|
} else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) {
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
if (typenum == FFI_TYPE_LONGDOUBLE)
|
|
typenum = FFI_TYPE_STRUCT;
|
|
#endif
|
|
}
|
|
|
|
switch (typenum) {
|
|
#ifndef __NO_FPRS__
|
|
case FFI_TYPE_FLOAT:
|
|
fparg_count++;
|
|
/* floating singles are not 8-aligned on stack */
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
fparg_count++;
|
|
/* Fall thru */
|
|
#endif
|
|
case FFI_TYPE_DOUBLE:
|
|
fparg_count++;
|
|
/* If this FP arg is going on the stack, it must be
|
|
8-byte-aligned. */
|
|
if (fparg_count > NUM_FPR_ARG_REGISTERS
|
|
&& intarg_count >= NUM_GPR_ARG_REGISTERS
|
|
&& intarg_count % 2 != 0)
|
|
intarg_count++;
|
|
break;
|
|
#endif
|
|
case FFI_TYPE_UINT128:
|
|
/*
|
|
* A long double in FFI_LINUX_SOFT_FLOAT can use only a set
|
|
* of four consecutive gprs. If we do not have enough, we
|
|
* have to adjust the intarg_count value.
|
|
*/
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3
|
|
&& intarg_count < NUM_GPR_ARG_REGISTERS)
|
|
intarg_count = NUM_GPR_ARG_REGISTERS;
|
|
intarg_count += 4;
|
|
break;
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
/* 'long long' arguments are passed as two words, but
|
|
either both words must fit in registers or both go
|
|
on the stack. If they go on the stack, they must
|
|
be 8-byte-aligned.
|
|
|
|
Also, only certain register pairs can be used for
|
|
passing long long int -- specifically (r3,r4), (r5,r6),
|
|
(r7,r8), (r9,r10).
|
|
*/
|
|
if (intarg_count == NUM_GPR_ARG_REGISTERS-1
|
|
|| intarg_count % 2 != 0)
|
|
intarg_count++;
|
|
intarg_count += 2;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
/* We must allocate space for a copy of these to enforce
|
|
pass-by-value. Pad the space up to a multiple of 16
|
|
bytes (the maximum alignment required for anything under
|
|
the SYSV ABI). */
|
|
struct_copy_size += ((*ptr)->size + 15) & ~0xF;
|
|
/* Fall through (allocate space for the pointer). */
|
|
|
|
case FFI_TYPE_POINTER:
|
|
case FFI_TYPE_INT:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_UINT16:
|
|
case FFI_TYPE_SINT16:
|
|
case FFI_TYPE_UINT8:
|
|
case FFI_TYPE_SINT8:
|
|
/* Everything else is passed as a 4-byte word in a GPR, either
|
|
the object itself or a pointer to it. */
|
|
intarg_count++;
|
|
break;
|
|
default:
|
|
FFI_ASSERT (0);
|
|
}
|
|
}
|
|
else
|
|
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
|
|
{
|
|
#ifdef __STRUCT_PARM_ALIGN__
|
|
unsigned int align;
|
|
#endif
|
|
|
|
switch ((*ptr)->type)
|
|
{
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
fparg_count += 2;
|
|
intarg_count += 2;
|
|
break;
|
|
#endif
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
fparg_count++;
|
|
intarg_count++;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
#ifdef __STRUCT_PARM_ALIGN__
|
|
align = (*ptr)->alignment;
|
|
if (align > __STRUCT_PARM_ALIGN__)
|
|
align = __STRUCT_PARM_ALIGN__;
|
|
align = align / 8;
|
|
if (align > 1)
|
|
intarg_count = ALIGN (intarg_count, align);
|
|
#endif
|
|
intarg_count += ((*ptr)->size + 7) / 8;
|
|
break;
|
|
|
|
case FFI_TYPE_POINTER:
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
case FFI_TYPE_INT:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_UINT16:
|
|
case FFI_TYPE_SINT16:
|
|
case FFI_TYPE_UINT8:
|
|
case FFI_TYPE_SINT8:
|
|
/* Everything else is passed as a 8-byte word in a GPR, either
|
|
the object itself or a pointer to it. */
|
|
intarg_count++;
|
|
break;
|
|
default:
|
|
FFI_ASSERT (0);
|
|
}
|
|
}
|
|
|
|
#ifndef __NO_FPRS__
|
|
if (fparg_count != 0)
|
|
flags |= FLAG_FP_ARGUMENTS;
|
|
#endif
|
|
if (intarg_count > 4)
|
|
flags |= FLAG_4_GPR_ARGUMENTS;
|
|
if (struct_copy_size != 0)
|
|
flags |= FLAG_ARG_NEEDS_COPY;
|
|
|
|
if (cif->abi != FFI_LINUX64)
|
|
{
|
|
#ifndef __NO_FPRS__
|
|
/* Space for the FPR registers, if needed. */
|
|
if (fparg_count != 0)
|
|
bytes += NUM_FPR_ARG_REGISTERS * sizeof (double);
|
|
#endif
|
|
|
|
/* Stack space. */
|
|
if (intarg_count > NUM_GPR_ARG_REGISTERS)
|
|
bytes += (intarg_count - NUM_GPR_ARG_REGISTERS) * sizeof (int);
|
|
#ifndef __NO_FPRS__
|
|
if (fparg_count > NUM_FPR_ARG_REGISTERS)
|
|
bytes += (fparg_count - NUM_FPR_ARG_REGISTERS) * sizeof (double);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifndef __NO_FPRS__
|
|
/* Space for the FPR registers, if needed. */
|
|
if (fparg_count != 0)
|
|
bytes += NUM_FPR_ARG_REGISTERS64 * sizeof (double);
|
|
#endif
|
|
|
|
/* Stack space. */
|
|
if (intarg_count > NUM_GPR_ARG_REGISTERS64)
|
|
bytes += (intarg_count - NUM_GPR_ARG_REGISTERS64) * sizeof (long);
|
|
}
|
|
|
|
/* The stack space allocated needs to be a multiple of 16 bytes. */
|
|
bytes = (bytes + 15) & ~0xF;
|
|
|
|
/* Add in the space for the copied structures. */
|
|
bytes += struct_copy_size;
|
|
|
|
cif->flags = flags;
|
|
cif->bytes = bytes;
|
|
|
|
return FFI_OK;
|
|
}
|
|
|
|
ffi_status
|
|
ffi_prep_cif_machdep (ffi_cif *cif)
|
|
{
|
|
cif->nfixedargs = cif->nargs;
|
|
return ffi_prep_cif_machdep_core (cif);
|
|
}
|
|
|
|
ffi_status
|
|
ffi_prep_cif_machdep_var (ffi_cif *cif,
|
|
unsigned int nfixedargs,
|
|
unsigned int ntotalargs MAYBE_UNUSED)
|
|
{
|
|
cif->nfixedargs = nfixedargs;
|
|
return ffi_prep_cif_machdep_core (cif);
|
|
}
|
|
|
|
extern void ffi_call_SYSV(extended_cif *, unsigned, unsigned, unsigned *,
|
|
void (*fn)(void));
|
|
extern void FFI_HIDDEN ffi_call_LINUX64(extended_cif *, unsigned long,
|
|
unsigned long, unsigned long *,
|
|
void (*fn)(void));
|
|
|
|
void
|
|
ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
|
|
{
|
|
/*
|
|
* The final SYSV ABI says that structures smaller or equal 8 bytes
|
|
* are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them
|
|
* in memory.
|
|
*
|
|
* We bounce-buffer SYSV small struct return values so that sysv.S
|
|
* can write r3 and r4 to memory without worrying about struct size.
|
|
*/
|
|
unsigned int smst_buffer[2];
|
|
extended_cif ecif;
|
|
|
|
ecif.cif = cif;
|
|
ecif.avalue = avalue;
|
|
|
|
ecif.rvalue = rvalue;
|
|
if ((cif->flags & FLAG_RETURNS_SMST) != 0)
|
|
ecif.rvalue = smst_buffer;
|
|
/* Ensure that we have a valid struct return value.
|
|
FIXME: Isn't this just papering over a user problem? */
|
|
else if (!rvalue && cif->rtype->type == FFI_TYPE_STRUCT)
|
|
ecif.rvalue = alloca (cif->rtype->size);
|
|
|
|
switch (cif->abi)
|
|
{
|
|
#ifndef POWERPC64
|
|
# ifndef __NO_FPRS__
|
|
case FFI_SYSV:
|
|
case FFI_GCC_SYSV:
|
|
case FFI_LINUX:
|
|
# endif
|
|
case FFI_LINUX_SOFT_FLOAT:
|
|
ffi_call_SYSV (&ecif, -cif->bytes, cif->flags, ecif.rvalue, fn);
|
|
break;
|
|
#else
|
|
case FFI_LINUX64:
|
|
ffi_call_LINUX64 (&ecif, -(long) cif->bytes, cif->flags, ecif.rvalue, fn);
|
|
break;
|
|
#endif
|
|
default:
|
|
FFI_ASSERT (0);
|
|
break;
|
|
}
|
|
|
|
/* Check for a bounce-buffered return value */
|
|
if (rvalue && ecif.rvalue == smst_buffer)
|
|
{
|
|
unsigned int rsize = cif->rtype->size;
|
|
#ifndef __LITTLE_ENDIAN__
|
|
/* The SYSV ABI returns a structure of up to 4 bytes in size
|
|
left-padded in r3. */
|
|
if (rsize <= 4)
|
|
memcpy (rvalue, (char *) smst_buffer + 4 - rsize, rsize);
|
|
/* The SYSV ABI returns a structure of up to 8 bytes in size
|
|
left-padded in r3/r4. */
|
|
else if (rsize <= 8)
|
|
memcpy (rvalue, (char *) smst_buffer + 8 - rsize, rsize);
|
|
else
|
|
#endif
|
|
memcpy (rvalue, smst_buffer, rsize);
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef POWERPC64
|
|
#define MIN_CACHE_LINE_SIZE 8
|
|
|
|
static void
|
|
flush_icache (char *wraddr, char *xaddr, int size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size; i += MIN_CACHE_LINE_SIZE)
|
|
__asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;"
|
|
: : "r" (xaddr + i), "r" (wraddr + i) : "memory");
|
|
__asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;" "sync;" "isync;"
|
|
: : "r"(xaddr + size - 1), "r"(wraddr + size - 1)
|
|
: "memory");
|
|
}
|
|
#endif
|
|
|
|
ffi_status
|
|
ffi_prep_closure_loc (ffi_closure *closure,
|
|
ffi_cif *cif,
|
|
void (*fun) (ffi_cif *, void *, void **, void *),
|
|
void *user_data,
|
|
void *codeloc)
|
|
{
|
|
#ifdef POWERPC64
|
|
void **tramp = (void **) &closure->tramp[0];
|
|
|
|
if (cif->abi != FFI_LINUX64)
|
|
return FFI_BAD_ABI;
|
|
/* Copy function address and TOC from ffi_closure_LINUX64. */
|
|
memcpy (tramp, (char *) ffi_closure_LINUX64, 16);
|
|
tramp[2] = codeloc;
|
|
#else
|
|
unsigned int *tramp;
|
|
|
|
if (! (cif->abi == FFI_GCC_SYSV
|
|
|| cif->abi == FFI_SYSV
|
|
|| cif->abi == FFI_LINUX
|
|
|| cif->abi == FFI_LINUX_SOFT_FLOAT))
|
|
return FFI_BAD_ABI;
|
|
|
|
tramp = (unsigned int *) &closure->tramp[0];
|
|
tramp[0] = 0x7c0802a6; /* mflr r0 */
|
|
tramp[1] = 0x4800000d; /* bl 10 <trampoline_initial+0x10> */
|
|
tramp[4] = 0x7d6802a6; /* mflr r11 */
|
|
tramp[5] = 0x7c0803a6; /* mtlr r0 */
|
|
tramp[6] = 0x800b0000; /* lwz r0,0(r11) */
|
|
tramp[7] = 0x816b0004; /* lwz r11,4(r11) */
|
|
tramp[8] = 0x7c0903a6; /* mtctr r0 */
|
|
tramp[9] = 0x4e800420; /* bctr */
|
|
*(void **) &tramp[2] = (void *) ffi_closure_SYSV; /* function */
|
|
*(void **) &tramp[3] = codeloc; /* context */
|
|
|
|
/* Flush the icache. */
|
|
flush_icache ((char *)tramp, (char *)codeloc, FFI_TRAMPOLINE_SIZE);
|
|
#endif
|
|
|
|
closure->cif = cif;
|
|
closure->fun = fun;
|
|
closure->user_data = user_data;
|
|
|
|
return FFI_OK;
|
|
}
|
|
|
|
typedef union
|
|
{
|
|
float f;
|
|
double d;
|
|
} ffi_dblfl;
|
|
|
|
int ffi_closure_helper_SYSV (ffi_closure *, void *, unsigned long *,
|
|
ffi_dblfl *, unsigned long *);
|
|
|
|
/* Basically the trampoline invokes ffi_closure_SYSV, and on
|
|
* entry, r11 holds the address of the closure.
|
|
* After storing the registers that could possibly contain
|
|
* parameters to be passed into the stack frame and setting
|
|
* up space for a return value, ffi_closure_SYSV invokes the
|
|
* following helper function to do most of the work
|
|
*/
|
|
|
|
int
|
|
ffi_closure_helper_SYSV (ffi_closure *closure, void *rvalue,
|
|
unsigned long *pgr, ffi_dblfl *pfr,
|
|
unsigned long *pst)
|
|
{
|
|
/* rvalue is the pointer to space for return value in closure assembly */
|
|
/* pgr is the pointer to where r3-r10 are stored in ffi_closure_SYSV */
|
|
/* pfr is the pointer to where f1-f8 are stored in ffi_closure_SYSV */
|
|
/* pst is the pointer to outgoing parameter stack in original caller */
|
|
|
|
void ** avalue;
|
|
ffi_type ** arg_types;
|
|
long i, avn;
|
|
#ifndef __NO_FPRS__
|
|
long nf = 0; /* number of floating registers already used */
|
|
#endif
|
|
long ng = 0; /* number of general registers already used */
|
|
|
|
ffi_cif *cif = closure->cif;
|
|
unsigned size = cif->rtype->size;
|
|
unsigned short rtypenum = cif->rtype->type;
|
|
|
|
avalue = alloca (cif->nargs * sizeof (void *));
|
|
|
|
/* First translate for softfloat/nonlinux */
|
|
if (cif->abi == FFI_LINUX_SOFT_FLOAT) {
|
|
if (rtypenum == FFI_TYPE_FLOAT)
|
|
rtypenum = FFI_TYPE_UINT32;
|
|
if (rtypenum == FFI_TYPE_DOUBLE)
|
|
rtypenum = FFI_TYPE_UINT64;
|
|
if (rtypenum == FFI_TYPE_LONGDOUBLE)
|
|
rtypenum = FFI_TYPE_UINT128;
|
|
} else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) {
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
if (rtypenum == FFI_TYPE_LONGDOUBLE)
|
|
rtypenum = FFI_TYPE_STRUCT;
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Copy the caller's structure return value address so that the closure
|
|
returns the data directly to the caller.
|
|
For FFI_SYSV the result is passed in r3/r4 if the struct size is less
|
|
or equal 8 bytes. */
|
|
if (rtypenum == FFI_TYPE_STRUCT && ((cif->abi != FFI_SYSV) || (size > 8))) {
|
|
rvalue = (void *) *pgr;
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
|
|
i = 0;
|
|
avn = cif->nargs;
|
|
arg_types = cif->arg_types;
|
|
|
|
/* Grab the addresses of the arguments from the stack frame. */
|
|
while (i < avn) {
|
|
unsigned short typenum = arg_types[i]->type;
|
|
|
|
/* We may need to handle some values depending on ABI */
|
|
if (cif->abi == FFI_LINUX_SOFT_FLOAT) {
|
|
if (typenum == FFI_TYPE_FLOAT)
|
|
typenum = FFI_TYPE_UINT32;
|
|
if (typenum == FFI_TYPE_DOUBLE)
|
|
typenum = FFI_TYPE_UINT64;
|
|
if (typenum == FFI_TYPE_LONGDOUBLE)
|
|
typenum = FFI_TYPE_UINT128;
|
|
} else if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64) {
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
if (typenum == FFI_TYPE_LONGDOUBLE)
|
|
typenum = FFI_TYPE_STRUCT;
|
|
#endif
|
|
}
|
|
|
|
switch (typenum) {
|
|
#ifndef __NO_FPRS__
|
|
case FFI_TYPE_FLOAT:
|
|
/* unfortunately float values are stored as doubles
|
|
* in the ffi_closure_SYSV code (since we don't check
|
|
* the type in that routine).
|
|
*/
|
|
|
|
/* there are 8 64bit floating point registers */
|
|
|
|
if (nf < 8)
|
|
{
|
|
double temp = pfr->d;
|
|
pfr->f = (float) temp;
|
|
avalue[i] = pfr;
|
|
nf++;
|
|
pfr++;
|
|
}
|
|
else
|
|
{
|
|
/* FIXME? here we are really changing the values
|
|
* stored in the original calling routines outgoing
|
|
* parameter stack. This is probably a really
|
|
* naughty thing to do but...
|
|
*/
|
|
avalue[i] = pst;
|
|
pst += 1;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
/* On the outgoing stack all values are aligned to 8 */
|
|
/* there are 8 64bit floating point registers */
|
|
|
|
if (nf < 8)
|
|
{
|
|
avalue[i] = pfr;
|
|
nf++;
|
|
pfr++;
|
|
}
|
|
else
|
|
{
|
|
if (((long) pst) & 4)
|
|
pst++;
|
|
avalue[i] = pst;
|
|
pst += 2;
|
|
}
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
if (nf < 7)
|
|
{
|
|
avalue[i] = pfr;
|
|
pfr += 2;
|
|
nf += 2;
|
|
}
|
|
else
|
|
{
|
|
if (((long) pst) & 4)
|
|
pst++;
|
|
avalue[i] = pst;
|
|
pst += 4;
|
|
nf = 8;
|
|
}
|
|
break;
|
|
#endif
|
|
#endif /* have FPRS */
|
|
|
|
case FFI_TYPE_UINT128:
|
|
/*
|
|
* Test if for the whole long double, 4 gprs are available.
|
|
* otherwise the stuff ends up on the stack.
|
|
*/
|
|
if (ng < 5) {
|
|
avalue[i] = pgr;
|
|
pgr += 4;
|
|
ng += 4;
|
|
} else {
|
|
avalue[i] = pst;
|
|
pst += 4;
|
|
ng = 8+4;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_SINT8:
|
|
case FFI_TYPE_UINT8:
|
|
#ifndef __LITTLE_ENDIAN__
|
|
/* there are 8 gpr registers used to pass values */
|
|
if (ng < 8)
|
|
{
|
|
avalue[i] = (char *) pgr + 3;
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
else
|
|
{
|
|
avalue[i] = (char *) pst + 3;
|
|
pst++;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_SINT16:
|
|
case FFI_TYPE_UINT16:
|
|
#ifndef __LITTLE_ENDIAN__
|
|
/* there are 8 gpr registers used to pass values */
|
|
if (ng < 8)
|
|
{
|
|
avalue[i] = (char *) pgr + 2;
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
else
|
|
{
|
|
avalue[i] = (char *) pst + 2;
|
|
pst++;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_POINTER:
|
|
/* there are 8 gpr registers used to pass values */
|
|
if (ng < 8)
|
|
{
|
|
avalue[i] = pgr;
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
else
|
|
{
|
|
avalue[i] = pst;
|
|
pst++;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
/* Structs are passed by reference. The address will appear in a
|
|
gpr if it is one of the first 8 arguments. */
|
|
if (ng < 8)
|
|
{
|
|
avalue[i] = (void *) *pgr;
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
else
|
|
{
|
|
avalue[i] = (void *) *pst;
|
|
pst++;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_SINT64:
|
|
case FFI_TYPE_UINT64:
|
|
/* passing long long ints are complex, they must
|
|
* be passed in suitable register pairs such as
|
|
* (r3,r4) or (r5,r6) or (r6,r7), or (r7,r8) or (r9,r10)
|
|
* and if the entire pair aren't available then the outgoing
|
|
* parameter stack is used for both but an alignment of 8
|
|
* must will be kept. So we must either look in pgr
|
|
* or pst to find the correct address for this type
|
|
* of parameter.
|
|
*/
|
|
if (ng < 7)
|
|
{
|
|
if (ng & 0x01)
|
|
{
|
|
/* skip r4, r6, r8 as starting points */
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
avalue[i] = pgr;
|
|
ng += 2;
|
|
pgr += 2;
|
|
}
|
|
else
|
|
{
|
|
if (((long) pst) & 4)
|
|
pst++;
|
|
avalue[i] = pst;
|
|
pst += 2;
|
|
ng = 8;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
FFI_ASSERT (0);
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
|
|
(closure->fun) (cif, rvalue, avalue, closure->user_data);
|
|
|
|
/* Tell ffi_closure_SYSV how to perform return type promotions.
|
|
Because the FFI_SYSV ABI returns the structures <= 8 bytes in r3/r4
|
|
we have to tell ffi_closure_SYSV how to treat them. We combine the base
|
|
type FFI_SYSV_TYPE_SMALL_STRUCT - 1 with the size of the struct.
|
|
So a one byte struct gets the return type 16. Return type 1 to 15 are
|
|
already used and we never have a struct with size zero. That is the reason
|
|
for the subtraction of 1. See the comment in ffitarget.h about ordering.
|
|
*/
|
|
if (cif->abi == FFI_SYSV && rtypenum == FFI_TYPE_STRUCT && size <= 8)
|
|
return (FFI_SYSV_TYPE_SMALL_STRUCT - 1) + size;
|
|
return rtypenum;
|
|
}
|
|
|
|
int FFI_HIDDEN ffi_closure_helper_LINUX64 (ffi_closure *, void *,
|
|
unsigned long *, ffi_dblfl *);
|
|
|
|
int FFI_HIDDEN
|
|
ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
|
|
unsigned long *pst, ffi_dblfl *pfr)
|
|
{
|
|
/* rvalue is the pointer to space for return value in closure assembly */
|
|
/* pst is the pointer to parameter save area
|
|
(r3-r10 are stored into its first 8 slots by ffi_closure_LINUX64) */
|
|
/* pfr is the pointer to where f1-f13 are stored in ffi_closure_LINUX64 */
|
|
|
|
void **avalue;
|
|
ffi_type **arg_types;
|
|
unsigned long i, avn, nfixedargs;
|
|
ffi_cif *cif;
|
|
ffi_dblfl *end_pfr = pfr + NUM_FPR_ARG_REGISTERS64;
|
|
#ifdef __STRUCT_PARM_ALIGN__
|
|
unsigned long align;
|
|
#endif
|
|
|
|
cif = closure->cif;
|
|
avalue = alloca (cif->nargs * sizeof (void *));
|
|
|
|
/* Copy the caller's structure return value address so that the closure
|
|
returns the data directly to the caller. */
|
|
if (cif->rtype->type == FFI_TYPE_STRUCT)
|
|
{
|
|
rvalue = (void *) *pst;
|
|
pst++;
|
|
}
|
|
|
|
i = 0;
|
|
avn = cif->nargs;
|
|
nfixedargs = cif->nfixedargs;
|
|
arg_types = cif->arg_types;
|
|
|
|
/* Grab the addresses of the arguments from the stack frame. */
|
|
while (i < avn)
|
|
{
|
|
switch (arg_types[i]->type)
|
|
{
|
|
case FFI_TYPE_SINT8:
|
|
case FFI_TYPE_UINT8:
|
|
#ifndef __LITTLE_ENDIAN__
|
|
avalue[i] = (char *) pst + 7;
|
|
pst++;
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_SINT16:
|
|
case FFI_TYPE_UINT16:
|
|
#ifndef __LITTLE_ENDIAN__
|
|
avalue[i] = (char *) pst + 6;
|
|
pst++;
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_UINT32:
|
|
#ifndef __LITTLE_ENDIAN__
|
|
avalue[i] = (char *) pst + 4;
|
|
pst++;
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_SINT64:
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_POINTER:
|
|
avalue[i] = pst;
|
|
pst++;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
#ifdef __STRUCT_PARM_ALIGN__
|
|
align = arg_types[i]->alignment;
|
|
if (align > __STRUCT_PARM_ALIGN__)
|
|
align = __STRUCT_PARM_ALIGN__;
|
|
if (align > 1)
|
|
pst = (unsigned long *) ALIGN ((size_t) pst, align);
|
|
#endif
|
|
#ifndef __LITTLE_ENDIAN__
|
|
/* Structures with size less than eight bytes are passed
|
|
left-padded. */
|
|
if (arg_types[i]->size < 8)
|
|
avalue[i] = (char *) pst + 8 - arg_types[i]->size;
|
|
else
|
|
#endif
|
|
avalue[i] = pst;
|
|
pst += (arg_types[i]->size + 7) / 8;
|
|
break;
|
|
|
|
case FFI_TYPE_FLOAT:
|
|
/* unfortunately float values are stored as doubles
|
|
* in the ffi_closure_LINUX64 code (since we don't check
|
|
* the type in that routine).
|
|
*/
|
|
|
|
/* there are 13 64bit floating point registers */
|
|
|
|
if (pfr < end_pfr && i < nfixedargs)
|
|
{
|
|
double temp = pfr->d;
|
|
pfr->f = (float) temp;
|
|
avalue[i] = pfr;
|
|
pfr++;
|
|
}
|
|
else
|
|
avalue[i] = pst;
|
|
pst++;
|
|
break;
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
/* On the outgoing stack all values are aligned to 8 */
|
|
/* there are 13 64bit floating point registers */
|
|
|
|
if (pfr < end_pfr && i < nfixedargs)
|
|
{
|
|
avalue[i] = pfr;
|
|
pfr++;
|
|
}
|
|
else
|
|
avalue[i] = pst;
|
|
pst++;
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
if (pfr + 1 < end_pfr && i + 1 < nfixedargs)
|
|
{
|
|
avalue[i] = pfr;
|
|
pfr += 2;
|
|
}
|
|
else
|
|
{
|
|
if (pfr < end_pfr && i < nfixedargs)
|
|
{
|
|
/* Passed partly in f13 and partly on the stack.
|
|
Move it all to the stack. */
|
|
*pst = *(unsigned long *) pfr;
|
|
pfr++;
|
|
}
|
|
avalue[i] = pst;
|
|
}
|
|
pst += 2;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
FFI_ASSERT (0);
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
|
|
(closure->fun) (cif, rvalue, avalue, closure->user_data);
|
|
|
|
/* Tell ffi_closure_LINUX64 how to perform return type promotions. */
|
|
return cif->rtype->type;
|
|
}
|