801 lines
23 KiB
C
801 lines
23 KiB
C
/* -----------------------------------------------------------------------
|
|
ffi_darwin.c
|
|
|
|
Copyright (C) 1998 Geoffrey Keating
|
|
Copyright (C) 2001 John Hornkvist
|
|
Copyright (C) 2002, 2006, 2007 Free Software Foundation, Inc.
|
|
|
|
FFI support for Darwin and AIX.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
``Software''), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
----------------------------------------------------------------------- */
|
|
|
|
#include <ffi.h>
|
|
#include <ffi_common.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
extern void ffi_closure_ASM(void);
|
|
|
|
enum {
|
|
/* The assembly depends on these exact flags. */
|
|
FLAG_RETURNS_NOTHING = 1 << (31-30), /* These go in cr7 */
|
|
FLAG_RETURNS_FP = 1 << (31-29),
|
|
FLAG_RETURNS_64BITS = 1 << (31-28),
|
|
FLAG_RETURNS_128BITS = 1 << (31-31),
|
|
|
|
FLAG_ARG_NEEDS_COPY = 1 << (31- 7),
|
|
FLAG_FP_ARGUMENTS = 1 << (31- 6), /* cr1.eq; specified by ABI */
|
|
FLAG_4_GPR_ARGUMENTS = 1 << (31- 5),
|
|
FLAG_RETVAL_REFERENCE = 1 << (31- 4)
|
|
};
|
|
|
|
/* About the DARWIN ABI. */
|
|
enum {
|
|
NUM_GPR_ARG_REGISTERS = 8,
|
|
NUM_FPR_ARG_REGISTERS = 13
|
|
};
|
|
enum { ASM_NEEDS_REGISTERS = 4 };
|
|
|
|
/* ffi_prep_args is called by the assembly routine once stack space
|
|
has been allocated for the function's arguments.
|
|
|
|
The stack layout we want looks like this:
|
|
|
|
| Return address from ffi_call_DARWIN | higher addresses
|
|
|--------------------------------------------|
|
|
| Previous backchain pointer 4 | stack pointer here
|
|
|--------------------------------------------|<+ <<< on entry to
|
|
| Saved r28-r31 4*4 | | ffi_call_DARWIN
|
|
|--------------------------------------------| |
|
|
| Parameters (at least 8*4=32) | |
|
|
|--------------------------------------------| |
|
|
| Space for GPR2 4 | |
|
|
|--------------------------------------------| | stack |
|
|
| Reserved 2*4 | | grows |
|
|
|--------------------------------------------| | down V
|
|
| Space for callee's LR 4 | |
|
|
|--------------------------------------------| | lower addresses
|
|
| Saved CR 4 | |
|
|
|--------------------------------------------| | stack pointer here
|
|
| Current backchain pointer 4 |-/ during
|
|
|--------------------------------------------| <<< ffi_call_DARWIN
|
|
|
|
*/
|
|
|
|
void ffi_prep_args(extended_cif *ecif, unsigned *const stack)
|
|
{
|
|
const unsigned bytes = ecif->cif->bytes;
|
|
const unsigned flags = ecif->cif->flags;
|
|
|
|
/* 'stacktop' points at the previous backchain pointer. */
|
|
unsigned *const stacktop = stack + (bytes / sizeof(unsigned));
|
|
|
|
/* 'fpr_base' points at the space for fpr1, and grows upwards as
|
|
we use FPR registers. */
|
|
double *fpr_base = (double*) (stacktop - ASM_NEEDS_REGISTERS) - NUM_FPR_ARG_REGISTERS;
|
|
int fparg_count = 0;
|
|
|
|
|
|
/* 'next_arg' grows up as we put parameters in it. */
|
|
unsigned *next_arg = stack + 6; /* 6 reserved positions. */
|
|
|
|
int i = ecif->cif->nargs;
|
|
double double_tmp;
|
|
void **p_argv = ecif->avalue;
|
|
unsigned gprvalue;
|
|
ffi_type** ptr = ecif->cif->arg_types;
|
|
char *dest_cpy;
|
|
unsigned size_al = 0;
|
|
|
|
/* Check that everything starts aligned properly. */
|
|
FFI_ASSERT(((unsigned)(char *)stack & 0xF) == 0);
|
|
FFI_ASSERT(((unsigned)(char *)stacktop & 0xF) == 0);
|
|
FFI_ASSERT((bytes & 0xF) == 0);
|
|
|
|
/* Deal with return values that are actually pass-by-reference.
|
|
Rule:
|
|
Return values are referenced by r3, so r4 is the first parameter. */
|
|
|
|
if (flags & FLAG_RETVAL_REFERENCE)
|
|
*next_arg++ = (unsigned)(char *)ecif->rvalue;
|
|
|
|
/* Now for the arguments. */
|
|
for (;
|
|
i > 0;
|
|
i--, ptr++, p_argv++)
|
|
{
|
|
switch ((*ptr)->type)
|
|
{
|
|
/* If a floating-point parameter appears before all of the general-
|
|
purpose registers are filled, the corresponding GPRs that match
|
|
the size of the floating-point parameter are skipped. */
|
|
case FFI_TYPE_FLOAT:
|
|
double_tmp = *(float *)*p_argv;
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
|
|
*(double *)next_arg = double_tmp;
|
|
else
|
|
*fpr_base++ = double_tmp;
|
|
next_arg++;
|
|
fparg_count++;
|
|
FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
double_tmp = *(double *)*p_argv;
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
|
|
*(double *)next_arg = double_tmp;
|
|
else
|
|
*fpr_base++ = double_tmp;
|
|
next_arg += 2;
|
|
fparg_count++;
|
|
FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
double_tmp = ((double *)*p_argv)[0];
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
|
|
*(double *)next_arg = double_tmp;
|
|
else
|
|
*fpr_base++ = double_tmp;
|
|
next_arg += 2;
|
|
fparg_count++;
|
|
double_tmp = ((double *)*p_argv)[1];
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
|
|
*(double *)next_arg = double_tmp;
|
|
else
|
|
*fpr_base++ = double_tmp;
|
|
next_arg += 2;
|
|
fparg_count++;
|
|
FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
#endif
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
*(long long *)next_arg = *(long long *)*p_argv;
|
|
next_arg+=2;
|
|
break;
|
|
case FFI_TYPE_UINT8:
|
|
gprvalue = *(unsigned char *)*p_argv;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT8:
|
|
gprvalue = *(signed char *)*p_argv;
|
|
goto putgpr;
|
|
case FFI_TYPE_UINT16:
|
|
gprvalue = *(unsigned short *)*p_argv;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT16:
|
|
gprvalue = *(signed short *)*p_argv;
|
|
goto putgpr;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
dest_cpy = (char *) next_arg;
|
|
|
|
/* Structures that match the basic modes (QI 1 byte, HI 2 bytes,
|
|
SI 4 bytes) are aligned as if they were those modes.
|
|
Structures with 3 byte in size are padded upwards. */
|
|
size_al = (*ptr)->size;
|
|
/* If the first member of the struct is a double, then align
|
|
the struct to double-word.
|
|
Type 3 is defined in include/ffi.h. #define FFI_TYPE_DOUBLE 3. */
|
|
if ((*ptr)->elements[0]->type == 3)
|
|
size_al = ALIGN((*ptr)->size, 8);
|
|
if (size_al < 3 && ecif->cif->abi == FFI_DARWIN)
|
|
dest_cpy += 4 - size_al;
|
|
|
|
memcpy((char *)dest_cpy, (char *)*p_argv, size_al);
|
|
next_arg += (size_al + 3) / 4;
|
|
break;
|
|
|
|
case FFI_TYPE_INT:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_POINTER:
|
|
gprvalue = *(unsigned *)*p_argv;
|
|
putgpr:
|
|
*next_arg++ = gprvalue;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check that we didn't overrun the stack... */
|
|
//FFI_ASSERT(gpr_base <= stacktop - ASM_NEEDS_REGISTERS);
|
|
//FFI_ASSERT((unsigned *)fpr_base
|
|
// <= stacktop - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS);
|
|
//FFI_ASSERT(flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4);
|
|
}
|
|
|
|
/* Adjust the size of S to be correct for Darwin.
|
|
On Darwin, the first field of a structure has natural alignment. */
|
|
|
|
static void
|
|
darwin_adjust_aggregate_sizes (ffi_type *s)
|
|
{
|
|
int i;
|
|
|
|
if (s->type != FFI_TYPE_STRUCT)
|
|
return;
|
|
|
|
s->size = 0;
|
|
for (i = 0; s->elements[i] != NULL; i++)
|
|
{
|
|
ffi_type *p;
|
|
int align;
|
|
|
|
p = s->elements[i];
|
|
darwin_adjust_aggregate_sizes (p);
|
|
if (i == 0
|
|
&& (p->type == FFI_TYPE_UINT64
|
|
|| p->type == FFI_TYPE_SINT64
|
|
|| p->type == FFI_TYPE_DOUBLE
|
|
|| p->alignment == 8))
|
|
align = 8;
|
|
else if (p->alignment == 16 || p->alignment < 4)
|
|
align = p->alignment;
|
|
else
|
|
align = 4;
|
|
s->size = ALIGN(s->size, align) + p->size;
|
|
}
|
|
|
|
s->size = ALIGN(s->size, s->alignment);
|
|
|
|
if (s->elements[0]->type == FFI_TYPE_UINT64
|
|
|| s->elements[0]->type == FFI_TYPE_SINT64
|
|
|| s->elements[0]->type == FFI_TYPE_DOUBLE
|
|
|| s->elements[0]->alignment == 8)
|
|
s->alignment = s->alignment > 8 ? s->alignment : 8;
|
|
/* Do not add additional tail padding. */
|
|
}
|
|
|
|
/* Perform machine dependent cif processing. */
|
|
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
|
|
{
|
|
/* All this is for the DARWIN ABI. */
|
|
int i;
|
|
ffi_type **ptr;
|
|
unsigned bytes;
|
|
int fparg_count = 0, intarg_count = 0;
|
|
unsigned flags = 0;
|
|
unsigned size_al = 0;
|
|
|
|
/* All the machine-independent calculation of cif->bytes will be wrong.
|
|
All the calculation of structure sizes will also be wrong.
|
|
Redo the calculation for DARWIN. */
|
|
|
|
if (cif->abi == FFI_DARWIN)
|
|
{
|
|
darwin_adjust_aggregate_sizes (cif->rtype);
|
|
for (i = 0; i < cif->nargs; i++)
|
|
darwin_adjust_aggregate_sizes (cif->arg_types[i]);
|
|
}
|
|
|
|
/* Space for the frame pointer, callee's LR, CR, etc, and for
|
|
the asm's temp regs. */
|
|
|
|
bytes = (6 + ASM_NEEDS_REGISTERS) * sizeof(long);
|
|
|
|
/* Return value handling. The rules are as follows:
|
|
- 32-bit (or less) integer values are returned in gpr3;
|
|
- Structures of size <= 4 bytes also returned in gpr3;
|
|
- 64-bit integer values and structures between 5 and 8 bytes are returned
|
|
in gpr3 and gpr4;
|
|
- Single/double FP values are returned in fpr1;
|
|
- Long double FP (if not equivalent to double) values are returned in
|
|
fpr1 and fpr2;
|
|
- Larger structures values are allocated space and a pointer is passed
|
|
as the first argument. */
|
|
switch (cif->rtype->type)
|
|
{
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
flags |= FLAG_RETURNS_128BITS;
|
|
flags |= FLAG_RETURNS_FP;
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
flags |= FLAG_RETURNS_64BITS;
|
|
/* Fall through. */
|
|
case FFI_TYPE_FLOAT:
|
|
flags |= FLAG_RETURNS_FP;
|
|
break;
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
flags |= FLAG_RETURNS_64BITS;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
flags |= FLAG_RETVAL_REFERENCE;
|
|
flags |= FLAG_RETURNS_NOTHING;
|
|
intarg_count++;
|
|
break;
|
|
case FFI_TYPE_VOID:
|
|
flags |= FLAG_RETURNS_NOTHING;
|
|
break;
|
|
|
|
default:
|
|
/* Returns 32-bit integer, or similar. Nothing to do here. */
|
|
break;
|
|
}
|
|
|
|
/* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the
|
|
first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest
|
|
goes on the stack. Structures are passed as a pointer to a copy of
|
|
the structure. Stuff on the stack needs to keep proper alignment. */
|
|
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
|
|
{
|
|
switch ((*ptr)->type)
|
|
{
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
fparg_count++;
|
|
/* If this FP arg is going on the stack, it must be
|
|
8-byte-aligned. */
|
|
if (fparg_count > NUM_FPR_ARG_REGISTERS
|
|
&& intarg_count%2 != 0)
|
|
intarg_count++;
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
fparg_count += 2;
|
|
/* If this FP arg is going on the stack, it must be
|
|
8-byte-aligned. */
|
|
if (fparg_count > NUM_FPR_ARG_REGISTERS
|
|
&& intarg_count%2 != 0)
|
|
intarg_count++;
|
|
intarg_count +=2;
|
|
break;
|
|
#endif
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
/* 'long long' arguments are passed as two words, but
|
|
either both words must fit in registers or both go
|
|
on the stack. If they go on the stack, they must
|
|
be 8-byte-aligned. */
|
|
if (intarg_count == NUM_GPR_ARG_REGISTERS-1
|
|
|| (intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count%2 != 0))
|
|
intarg_count++;
|
|
intarg_count += 2;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
size_al = (*ptr)->size;
|
|
/* If the first member of the struct is a double, then align
|
|
the struct to double-word.
|
|
Type 3 is defined in include/ffi.h. #define FFI_TYPE_DOUBLE 3. */
|
|
if ((*ptr)->elements[0]->type == 3)
|
|
size_al = ALIGN((*ptr)->size, 8);
|
|
intarg_count += (size_al + 3) / 4;
|
|
break;
|
|
|
|
default:
|
|
/* Everything else is passed as a 4-byte word in a GPR, either
|
|
the object itself or a pointer to it. */
|
|
intarg_count++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (fparg_count != 0)
|
|
flags |= FLAG_FP_ARGUMENTS;
|
|
|
|
/* Space for the FPR registers, if needed. */
|
|
if (fparg_count != 0)
|
|
bytes += NUM_FPR_ARG_REGISTERS * sizeof(double);
|
|
|
|
/* Stack space. */
|
|
if ((intarg_count + 2 * fparg_count) > NUM_GPR_ARG_REGISTERS)
|
|
bytes += (intarg_count + 2 * fparg_count) * sizeof(long);
|
|
else
|
|
bytes += NUM_GPR_ARG_REGISTERS * sizeof(long);
|
|
|
|
/* The stack space allocated needs to be a multiple of 16 bytes. */
|
|
bytes = (bytes + 15) & ~0xF;
|
|
|
|
cif->flags = flags;
|
|
cif->bytes = bytes;
|
|
|
|
return FFI_OK;
|
|
}
|
|
|
|
extern void ffi_call_AIX(extended_cif *, unsigned, unsigned, unsigned *,
|
|
void (*fn)(), void (*fn2)());
|
|
extern void ffi_call_DARWIN(extended_cif *, unsigned, unsigned, unsigned *,
|
|
void (*fn)(), void (*fn2)());
|
|
|
|
void ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
|
|
{
|
|
extended_cif ecif;
|
|
|
|
ecif.cif = cif;
|
|
ecif.avalue = avalue;
|
|
|
|
/* If the return value is a struct and we don't have a return
|
|
value address then we need to make one. */
|
|
|
|
if ((rvalue == NULL) &&
|
|
(cif->rtype->type == FFI_TYPE_STRUCT))
|
|
{
|
|
ecif.rvalue = alloca(cif->rtype->size);
|
|
}
|
|
else
|
|
ecif.rvalue = rvalue;
|
|
|
|
switch (cif->abi)
|
|
{
|
|
case FFI_AIX:
|
|
ffi_call_AIX(&ecif, -cif->bytes, cif->flags, ecif.rvalue, fn,
|
|
ffi_prep_args);
|
|
break;
|
|
case FFI_DARWIN:
|
|
ffi_call_DARWIN(&ecif, -cif->bytes, cif->flags, ecif.rvalue, fn,
|
|
ffi_prep_args);
|
|
break;
|
|
default:
|
|
FFI_ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void flush_icache(char *);
|
|
static void flush_range(char *, int);
|
|
|
|
/* The layout of a function descriptor. A C function pointer really
|
|
points to one of these. */
|
|
|
|
typedef struct aix_fd_struct {
|
|
void *code_pointer;
|
|
void *toc;
|
|
} aix_fd;
|
|
|
|
/* here I'd like to add the stack frame layout we use in darwin_closure.S
|
|
and aix_clsoure.S
|
|
|
|
SP previous -> +---------------------------------------+ <--- child frame
|
|
| back chain to caller 4 |
|
|
+---------------------------------------+ 4
|
|
| saved CR 4 |
|
|
+---------------------------------------+ 8
|
|
| saved LR 4 |
|
|
+---------------------------------------+ 12
|
|
| reserved for compilers 4 |
|
|
+---------------------------------------+ 16
|
|
| reserved for binders 4 |
|
|
+---------------------------------------+ 20
|
|
| saved TOC pointer 4 |
|
|
+---------------------------------------+ 24
|
|
| always reserved 8*4=32 (previous GPRs)|
|
|
| according to the linkage convention |
|
|
| from AIX |
|
|
+---------------------------------------+ 56
|
|
| our FPR area 13*8=104 |
|
|
| f1 |
|
|
| . |
|
|
| f13 |
|
|
+---------------------------------------+ 160
|
|
| result area 8 |
|
|
+---------------------------------------+ 168
|
|
| alignement to the next multiple of 16 |
|
|
SP current --> +---------------------------------------+ 176 <- parent frame
|
|
| back chain to caller 4 |
|
|
+---------------------------------------+ 180
|
|
| saved CR 4 |
|
|
+---------------------------------------+ 184
|
|
| saved LR 4 |
|
|
+---------------------------------------+ 188
|
|
| reserved for compilers 4 |
|
|
+---------------------------------------+ 192
|
|
| reserved for binders 4 |
|
|
+---------------------------------------+ 196
|
|
| saved TOC pointer 4 |
|
|
+---------------------------------------+ 200
|
|
| always reserved 8*4=32 we store our |
|
|
| GPRs here |
|
|
| r3 |
|
|
| . |
|
|
| r10 |
|
|
+---------------------------------------+ 232
|
|
| overflow part |
|
|
+---------------------------------------+ xxx
|
|
| ???? |
|
|
+---------------------------------------+ xxx
|
|
|
|
*/
|
|
ffi_status
|
|
ffi_prep_closure_loc (ffi_closure* closure,
|
|
ffi_cif* cif,
|
|
void (*fun)(ffi_cif*, void*, void**, void*),
|
|
void *user_data,
|
|
void *codeloc)
|
|
{
|
|
unsigned int *tramp;
|
|
struct ffi_aix_trampoline_struct *tramp_aix;
|
|
aix_fd *fd;
|
|
|
|
switch (cif->abi)
|
|
{
|
|
case FFI_DARWIN:
|
|
|
|
FFI_ASSERT (cif->abi == FFI_DARWIN);
|
|
|
|
tramp = (unsigned int *) &closure->tramp[0];
|
|
tramp[0] = 0x7c0802a6; /* mflr r0 */
|
|
tramp[1] = 0x429f000d; /* bcl- 20,4*cr7+so,0x10 */
|
|
tramp[4] = 0x7d6802a6; /* mflr r11 */
|
|
tramp[5] = 0x818b0000; /* lwz r12,0(r11) function address */
|
|
tramp[6] = 0x7c0803a6; /* mtlr r0 */
|
|
tramp[7] = 0x7d8903a6; /* mtctr r12 */
|
|
tramp[8] = 0x816b0004; /* lwz r11,4(r11) static chain */
|
|
tramp[9] = 0x4e800420; /* bctr */
|
|
tramp[2] = (unsigned long) ffi_closure_ASM; /* function */
|
|
tramp[3] = (unsigned long) codeloc; /* context */
|
|
|
|
closure->cif = cif;
|
|
closure->fun = fun;
|
|
closure->user_data = user_data;
|
|
|
|
/* Flush the icache. Only necessary on Darwin. */
|
|
flush_range(codeloc, FFI_TRAMPOLINE_SIZE);
|
|
|
|
break;
|
|
|
|
case FFI_AIX:
|
|
|
|
tramp_aix = (struct ffi_aix_trampoline_struct *) (closure->tramp);
|
|
fd = (aix_fd *)(void *)ffi_closure_ASM;
|
|
|
|
FFI_ASSERT (cif->abi == FFI_AIX);
|
|
|
|
tramp_aix->code_pointer = fd->code_pointer;
|
|
tramp_aix->toc = fd->toc;
|
|
tramp_aix->static_chain = codeloc;
|
|
closure->cif = cif;
|
|
closure->fun = fun;
|
|
closure->user_data = user_data;
|
|
|
|
default:
|
|
|
|
FFI_ASSERT(0);
|
|
break;
|
|
}
|
|
return FFI_OK;
|
|
}
|
|
|
|
static void
|
|
flush_icache(char *addr)
|
|
{
|
|
#ifndef _AIX
|
|
__asm__ volatile (
|
|
"dcbf 0,%0\n"
|
|
"\tsync\n"
|
|
"\ticbi 0,%0\n"
|
|
"\tsync\n"
|
|
"\tisync"
|
|
: : "r"(addr) : "memory");
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
flush_range(char * addr1, int size)
|
|
{
|
|
#define MIN_LINE_SIZE 32
|
|
int i;
|
|
for (i = 0; i < size; i += MIN_LINE_SIZE)
|
|
flush_icache(addr1+i);
|
|
flush_icache(addr1+size-1);
|
|
}
|
|
|
|
typedef union
|
|
{
|
|
float f;
|
|
double d;
|
|
} ffi_dblfl;
|
|
|
|
int ffi_closure_helper_DARWIN (ffi_closure*, void*,
|
|
unsigned long*, ffi_dblfl*);
|
|
|
|
/* Basically the trampoline invokes ffi_closure_ASM, and on
|
|
entry, r11 holds the address of the closure.
|
|
After storing the registers that could possibly contain
|
|
parameters to be passed into the stack frame and setting
|
|
up space for a return value, ffi_closure_ASM invokes the
|
|
following helper function to do most of the work. */
|
|
|
|
int ffi_closure_helper_DARWIN (ffi_closure* closure, void * rvalue,
|
|
unsigned long * pgr, ffi_dblfl * pfr)
|
|
{
|
|
/* rvalue is the pointer to space for return value in closure assembly
|
|
pgr is the pointer to where r3-r10 are stored in ffi_closure_ASM
|
|
pfr is the pointer to where f1-f13 are stored in ffi_closure_ASM. */
|
|
|
|
typedef double ldbits[2];
|
|
|
|
union ldu
|
|
{
|
|
ldbits lb;
|
|
long double ld;
|
|
};
|
|
|
|
void ** avalue;
|
|
ffi_type ** arg_types;
|
|
long i, avn;
|
|
long nf; /* number of floating registers already used. */
|
|
long ng; /* number of general registers already used. */
|
|
ffi_cif * cif;
|
|
double temp;
|
|
unsigned size_al;
|
|
union ldu temp_ld;
|
|
|
|
cif = closure->cif;
|
|
avalue = alloca(cif->nargs * sizeof(void *));
|
|
|
|
nf = 0;
|
|
ng = 0;
|
|
|
|
/* Copy the caller's structure return value address so that the closure
|
|
returns the data directly to the caller. */
|
|
if (cif->rtype->type == FFI_TYPE_STRUCT)
|
|
{
|
|
rvalue = (void *) *pgr;
|
|
pgr++;
|
|
ng++;
|
|
}
|
|
|
|
i = 0;
|
|
avn = cif->nargs;
|
|
arg_types = cif->arg_types;
|
|
|
|
/* Grab the addresses of the arguments from the stack frame. */
|
|
while (i < avn)
|
|
{
|
|
switch (arg_types[i]->type)
|
|
{
|
|
case FFI_TYPE_SINT8:
|
|
case FFI_TYPE_UINT8:
|
|
avalue[i] = (char *) pgr + 3;
|
|
ng++;
|
|
pgr++;
|
|
break;
|
|
|
|
case FFI_TYPE_SINT16:
|
|
case FFI_TYPE_UINT16:
|
|
avalue[i] = (char *) pgr + 2;
|
|
ng++;
|
|
pgr++;
|
|
break;
|
|
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_POINTER:
|
|
avalue[i] = pgr;
|
|
ng++;
|
|
pgr++;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
/* Structures that match the basic modes (QI 1 byte, HI 2 bytes,
|
|
SI 4 bytes) are aligned as if they were those modes. */
|
|
size_al = arg_types[i]->size;
|
|
/* If the first member of the struct is a double, then align
|
|
the struct to double-word.
|
|
Type 3 is defined in include/ffi.h. #define FFI_TYPE_DOUBLE 3. */
|
|
if (arg_types[i]->elements[0]->type == 3)
|
|
size_al = ALIGN(arg_types[i]->size, 8);
|
|
if (size_al < 3 && cif->abi == FFI_DARWIN)
|
|
avalue[i] = (void*) pgr + 4 - size_al;
|
|
else
|
|
avalue[i] = (void*) pgr;
|
|
ng += (size_al + 3) / 4;
|
|
pgr += (size_al + 3) / 4;
|
|
break;
|
|
|
|
case FFI_TYPE_SINT64:
|
|
case FFI_TYPE_UINT64:
|
|
/* Long long ints are passed in two gpr's. */
|
|
avalue[i] = pgr;
|
|
ng += 2;
|
|
pgr += 2;
|
|
break;
|
|
|
|
case FFI_TYPE_FLOAT:
|
|
/* A float value consumes a GPR.
|
|
There are 13 64bit floating point registers. */
|
|
if (nf < NUM_FPR_ARG_REGISTERS)
|
|
{
|
|
temp = pfr->d;
|
|
pfr->f = (float)temp;
|
|
avalue[i] = pfr;
|
|
pfr++;
|
|
}
|
|
else
|
|
{
|
|
avalue[i] = pgr;
|
|
}
|
|
nf++;
|
|
ng++;
|
|
pgr++;
|
|
break;
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
/* A double value consumes two GPRs.
|
|
There are 13 64bit floating point registers. */
|
|
if (nf < NUM_FPR_ARG_REGISTERS)
|
|
{
|
|
avalue[i] = pfr;
|
|
pfr++;
|
|
}
|
|
else
|
|
{
|
|
avalue[i] = pgr;
|
|
}
|
|
nf++;
|
|
ng += 2;
|
|
pgr += 2;
|
|
break;
|
|
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
/* A long double value consumes four GPRs and two FPRs.
|
|
There are 13 64bit floating point registers. */
|
|
if (nf < NUM_FPR_ARG_REGISTERS - 1)
|
|
{
|
|
avalue[i] = pfr;
|
|
pfr += 2;
|
|
}
|
|
/* Here we have the situation where one part of the long double
|
|
is stored in fpr13 and the other part is already on the stack.
|
|
We use a union to pass the long double to avalue[i]. */
|
|
else if (nf == NUM_FPR_ARG_REGISTERS - 1)
|
|
{
|
|
memcpy (&temp_ld.lb[0], pfr, sizeof(ldbits));
|
|
memcpy (&temp_ld.lb[1], pgr + 2, sizeof(ldbits));
|
|
avalue[i] = &temp_ld.ld;
|
|
}
|
|
else
|
|
{
|
|
avalue[i] = pgr;
|
|
}
|
|
nf += 2;
|
|
ng += 4;
|
|
pgr += 4;
|
|
break;
|
|
#endif
|
|
default:
|
|
FFI_ASSERT(0);
|
|
}
|
|
i++;
|
|
}
|
|
|
|
(closure->fun) (cif, rvalue, avalue, closure->user_data);
|
|
|
|
/* Tell ffi_closure_ASM to perform return type promotions. */
|
|
return cif->rtype->type;
|
|
}
|