681 lines
19 KiB
C
681 lines
19 KiB
C
/* -----------------------------------------------------------------------
|
|
ffi.c - Copyright (c) 1998 Geoffrey Keating
|
|
|
|
PowerPC Foreign Function Interface
|
|
|
|
$Id: ffi.c,v 1.1 2001/04/22 18:28:36 green Exp $
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
``Software''), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
----------------------------------------------------------------------- */
|
|
|
|
#include <ffi.h>
|
|
#include <ffi_common.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
extern void ffi_closure_SYSV(void);
|
|
|
|
enum {
|
|
/* The assembly depends on these exact flags. */
|
|
FLAG_RETURNS_NOTHING = 1 << (31-30), /* These go in cr7 */
|
|
FLAG_RETURNS_FP = 1 << (31-29),
|
|
FLAG_RETURNS_64BITS = 1 << (31-28),
|
|
|
|
FLAG_ARG_NEEDS_COPY = 1 << (31- 7),
|
|
FLAG_FP_ARGUMENTS = 1 << (31- 6), /* cr1.eq; specified by ABI */
|
|
FLAG_4_GPR_ARGUMENTS = 1 << (31- 5),
|
|
FLAG_RETVAL_REFERENCE = 1 << (31- 4)
|
|
};
|
|
|
|
/* About the SYSV ABI. */
|
|
enum {
|
|
NUM_GPR_ARG_REGISTERS = 8,
|
|
NUM_FPR_ARG_REGISTERS = 8
|
|
};
|
|
enum { ASM_NEEDS_REGISTERS = 4 };
|
|
|
|
/* ffi_prep_args is called by the assembly routine once stack space
|
|
has been allocated for the function's arguments.
|
|
|
|
The stack layout we want looks like this:
|
|
|
|
| Return address from ffi_call_SYSV 4bytes | higher addresses
|
|
|--------------------------------------------|
|
|
| Previous backchain pointer 4 | stack pointer here
|
|
|--------------------------------------------|<+ <<< on entry to
|
|
| Saved r28-r31 4*4 | | ffi_call_SYSV
|
|
|--------------------------------------------| |
|
|
| GPR registers r3-r10 8*4 | | ffi_call_SYSV
|
|
|--------------------------------------------| |
|
|
| FPR registers f1-f8 (optional) 8*8 | |
|
|
|--------------------------------------------| | stack |
|
|
| Space for copied structures | | grows |
|
|
|--------------------------------------------| | down V
|
|
| Parameters that didn't fit in registers | |
|
|
|--------------------------------------------| | lower addresses
|
|
| Space for callee's LR 4 | |
|
|
|--------------------------------------------| | stack pointer here
|
|
| Current backchain pointer 4 |-/ during
|
|
|--------------------------------------------| <<< ffi_call_SYSV
|
|
|
|
*/
|
|
|
|
/*@-exportheader@*/
|
|
void ffi_prep_args(extended_cif *ecif, unsigned *const stack)
|
|
/*@=exportheader@*/
|
|
{
|
|
const unsigned bytes = ecif->cif->bytes;
|
|
const unsigned flags = ecif->cif->flags;
|
|
|
|
/* 'stacktop' points at the previous backchain pointer. */
|
|
unsigned *const stacktop = stack + (ecif->cif->bytes / sizeof(unsigned));
|
|
|
|
/* 'gpr_base' points at the space for gpr3, and grows upwards as
|
|
we use GPR registers. */
|
|
unsigned *gpr_base = stacktop - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS;
|
|
int intarg_count = 0;
|
|
|
|
/* 'fpr_base' points at the space for fpr1, and grows upwards as
|
|
we use FPR registers. */
|
|
double *fpr_base = (double *)gpr_base - NUM_FPR_ARG_REGISTERS;
|
|
int fparg_count = 0;
|
|
|
|
/* 'copy_space' grows down as we put structures in it. It should
|
|
stay 16-byte aligned. */
|
|
char *copy_space = ((flags & FLAG_FP_ARGUMENTS)
|
|
? (char *)fpr_base
|
|
: (char *)gpr_base);
|
|
|
|
/* 'next_arg' grows up as we put parameters in it. */
|
|
unsigned *next_arg = stack + 2;
|
|
|
|
int i;
|
|
ffi_type **ptr;
|
|
double double_tmp;
|
|
void **p_argv;
|
|
size_t struct_copy_size;
|
|
unsigned gprvalue;
|
|
|
|
/* Check that everything starts aligned properly. */
|
|
FFI_ASSERT(((unsigned)(char *)stack & 0xF) == 0);
|
|
FFI_ASSERT(((unsigned)(char *)copy_space & 0xF) == 0);
|
|
FFI_ASSERT(((unsigned)(char *)stacktop & 0xF) == 0);
|
|
FFI_ASSERT((bytes & 0xF) == 0);
|
|
FFI_ASSERT(copy_space >= (char *)next_arg);
|
|
|
|
/* Deal with return values that are actually pass-by-reference. */
|
|
if (flags & FLAG_RETVAL_REFERENCE)
|
|
{
|
|
*gpr_base++ = (unsigned)(char *)ecif->rvalue;
|
|
intarg_count++;
|
|
}
|
|
|
|
/* Now for the arguments. */
|
|
p_argv = ecif->avalue;
|
|
for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
|
|
i > 0;
|
|
i--, ptr++, p_argv++)
|
|
{
|
|
switch ((*ptr)->type)
|
|
{
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
if ((*ptr)->type == FFI_TYPE_FLOAT)
|
|
double_tmp = *(float *)*p_argv;
|
|
else
|
|
double_tmp = *(double *)*p_argv;
|
|
|
|
if (fparg_count >= NUM_FPR_ARG_REGISTERS)
|
|
{
|
|
if (intarg_count%2 != 0)
|
|
{
|
|
intarg_count++;
|
|
next_arg++;
|
|
}
|
|
*(double *)next_arg = double_tmp;
|
|
next_arg += 2;
|
|
}
|
|
else
|
|
*fpr_base++ = double_tmp;
|
|
fparg_count++;
|
|
FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
|
|
break;
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
if (intarg_count == NUM_GPR_ARG_REGISTERS-1)
|
|
intarg_count++;
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS)
|
|
{
|
|
if (intarg_count%2 != 0)
|
|
{
|
|
intarg_count++;
|
|
next_arg++;
|
|
}
|
|
*(long long *)next_arg = *(long long *)*p_argv;
|
|
next_arg += 2;
|
|
}
|
|
else
|
|
{
|
|
/* whoops: abi states only certain register pairs
|
|
* can be used for passing long long int
|
|
* specifically (r3,r4), (r5,r6), (r7,r8),
|
|
* (r9,r10) and if next arg is long long but
|
|
* not correct starting register of pair then skip
|
|
* until the proper starting register
|
|
*/
|
|
if (intarg_count%2 != 0)
|
|
{
|
|
intarg_count ++;
|
|
gpr_base++;
|
|
}
|
|
*(long long *)gpr_base = *(long long *)*p_argv;
|
|
gpr_base += 2;
|
|
}
|
|
intarg_count += 2;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
#endif
|
|
struct_copy_size = ((*ptr)->size + 15) & ~0xF;
|
|
copy_space -= struct_copy_size;
|
|
memcpy(copy_space, (char *)*p_argv, (*ptr)->size);
|
|
|
|
gprvalue = (unsigned)copy_space;
|
|
|
|
FFI_ASSERT(copy_space > (char *)next_arg);
|
|
FFI_ASSERT(flags & FLAG_ARG_NEEDS_COPY);
|
|
goto putgpr;
|
|
|
|
case FFI_TYPE_UINT8:
|
|
gprvalue = *(unsigned char *)*p_argv;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT8:
|
|
gprvalue = *(signed char *)*p_argv;
|
|
goto putgpr;
|
|
case FFI_TYPE_UINT16:
|
|
gprvalue = *(unsigned short *)*p_argv;
|
|
goto putgpr;
|
|
case FFI_TYPE_SINT16:
|
|
gprvalue = *(signed short *)*p_argv;
|
|
goto putgpr;
|
|
|
|
case FFI_TYPE_INT:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_POINTER:
|
|
gprvalue = *(unsigned *)*p_argv;
|
|
putgpr:
|
|
if (intarg_count >= NUM_GPR_ARG_REGISTERS)
|
|
*next_arg++ = gprvalue;
|
|
else
|
|
*gpr_base++ = gprvalue;
|
|
intarg_count++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check that we didn't overrun the stack... */
|
|
FFI_ASSERT(copy_space >= (char *)next_arg);
|
|
FFI_ASSERT(gpr_base <= stacktop - ASM_NEEDS_REGISTERS);
|
|
FFI_ASSERT((unsigned *)fpr_base
|
|
<= stacktop - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS);
|
|
FFI_ASSERT(flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4);
|
|
}
|
|
|
|
/* Perform machine dependent cif processing */
|
|
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
|
|
{
|
|
/* All this is for the SYSV ABI. */
|
|
int i;
|
|
ffi_type **ptr;
|
|
unsigned bytes;
|
|
int fparg_count = 0, intarg_count = 0;
|
|
unsigned flags = 0;
|
|
unsigned struct_copy_size = 0;
|
|
|
|
/* All the machine-independent calculation of cif->bytes will be wrong.
|
|
Redo the calculation for SYSV. */
|
|
|
|
/* Space for the frame pointer, callee's LR, and the asm's temp regs. */
|
|
bytes = (2 + ASM_NEEDS_REGISTERS) * sizeof(int);
|
|
|
|
/* Space for the GPR registers. */
|
|
bytes += NUM_GPR_ARG_REGISTERS * sizeof(int);
|
|
|
|
/* Return value handling. The rules are as follows:
|
|
- 32-bit (or less) integer values are returned in gpr3;
|
|
- Structures of size <= 4 bytes also returned in gpr3;
|
|
- 64-bit integer values and structures between 5 and 8 bytes are returned
|
|
in gpr3 and gpr4;
|
|
- Single/double FP values are returned in fpr1;
|
|
- Larger structures and long double (if not equivalent to double) values
|
|
are allocated space and a pointer is passed as the first argument. */
|
|
switch (cif->rtype->type)
|
|
{
|
|
case FFI_TYPE_DOUBLE:
|
|
flags |= FLAG_RETURNS_64BITS;
|
|
/* Fall through. */
|
|
case FFI_TYPE_FLOAT:
|
|
flags |= FLAG_RETURNS_FP;
|
|
break;
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
flags |= FLAG_RETURNS_64BITS;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
if (cif->abi != FFI_GCC_SYSV)
|
|
if (cif->rtype->size <= 4)
|
|
break;
|
|
else if (cif->rtype->size <= 8)
|
|
{
|
|
flags |= FLAG_RETURNS_64BITS;
|
|
break;
|
|
}
|
|
/* else fall through. */
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
#endif
|
|
intarg_count++;
|
|
flags |= FLAG_RETVAL_REFERENCE;
|
|
/* Fall through. */
|
|
case FFI_TYPE_VOID:
|
|
flags |= FLAG_RETURNS_NOTHING;
|
|
break;
|
|
|
|
default:
|
|
/* Returns 32-bit integer, or similar. Nothing to do here. */
|
|
break;
|
|
}
|
|
|
|
/* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the
|
|
first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest
|
|
goes on the stack. Structures and long doubles (if not equivalent
|
|
to double) are passed as a pointer to a copy of the structure.
|
|
Stuff on the stack needs to keep proper alignment. */
|
|
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
|
|
{
|
|
switch ((*ptr)->type)
|
|
{
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
fparg_count++;
|
|
/* If this FP arg is going on the stack, it must be
|
|
8-byte-aligned. */
|
|
if (fparg_count > NUM_FPR_ARG_REGISTERS
|
|
&& intarg_count%2 != 0)
|
|
intarg_count++;
|
|
break;
|
|
|
|
case FFI_TYPE_UINT64:
|
|
case FFI_TYPE_SINT64:
|
|
/* 'long long' arguments are passed as two words, but
|
|
either both words must fit in registers or both go
|
|
on the stack. If they go on the stack, they must
|
|
be 8-byte-aligned. */
|
|
if (intarg_count == NUM_GPR_ARG_REGISTERS-1
|
|
|| intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count%2 != 0)
|
|
intarg_count++;
|
|
intarg_count += 2;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
|
|
case FFI_TYPE_LONGDOUBLE:
|
|
#endif
|
|
/* We must allocate space for a copy of these to enforce
|
|
pass-by-value. Pad the space up to a multiple of 16
|
|
bytes (the maximum alignment required for anything under
|
|
the SYSV ABI). */
|
|
struct_copy_size += ((*ptr)->size + 15) & ~0xF;
|
|
/* Fall through (allocate space for the pointer). */
|
|
|
|
default:
|
|
/* Everything else is passed as a 4-byte word in a GPR, either
|
|
the object itself or a pointer to it. */
|
|
intarg_count++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (fparg_count != 0)
|
|
flags |= FLAG_FP_ARGUMENTS;
|
|
if (intarg_count > 4)
|
|
flags |= FLAG_4_GPR_ARGUMENTS;
|
|
if (struct_copy_size != 0)
|
|
flags |= FLAG_ARG_NEEDS_COPY;
|
|
|
|
/* Space for the FPR registers, if needed. */
|
|
if (fparg_count != 0)
|
|
bytes += NUM_FPR_ARG_REGISTERS * sizeof(double);
|
|
|
|
/* Stack space. */
|
|
if (intarg_count > NUM_GPR_ARG_REGISTERS)
|
|
bytes += (intarg_count - NUM_GPR_ARG_REGISTERS) * sizeof(int);
|
|
if (fparg_count > NUM_FPR_ARG_REGISTERS)
|
|
bytes += (fparg_count - NUM_FPR_ARG_REGISTERS) * sizeof(double);
|
|
|
|
/* The stack space allocated needs to be a multiple of 16 bytes. */
|
|
bytes = (bytes + 15) & ~0xF;
|
|
|
|
/* Add in the space for the copied structures. */
|
|
bytes += struct_copy_size;
|
|
|
|
cif->flags = flags;
|
|
cif->bytes = bytes;
|
|
|
|
return FFI_OK;
|
|
}
|
|
|
|
/*@-declundef@*/
|
|
/*@-exportheader@*/
|
|
extern void ffi_call_SYSV(/*@out@*/ extended_cif *,
|
|
unsigned, unsigned,
|
|
/*@out@*/ unsigned *,
|
|
void (*fn)());
|
|
/*@=declundef@*/
|
|
/*@=exportheader@*/
|
|
|
|
void ffi_call(/*@dependent@*/ ffi_cif *cif,
|
|
void (*fn)(),
|
|
/*@out@*/ void *rvalue,
|
|
/*@dependent@*/ void **avalue)
|
|
{
|
|
extended_cif ecif;
|
|
|
|
ecif.cif = cif;
|
|
ecif.avalue = avalue;
|
|
|
|
/* If the return value is a struct and we don't have a return */
|
|
/* value address then we need to make one */
|
|
|
|
if ((rvalue == NULL) &&
|
|
(cif->rtype->type == FFI_TYPE_STRUCT))
|
|
{
|
|
/*@-sysunrecog@*/
|
|
ecif.rvalue = alloca(cif->rtype->size);
|
|
/*@=sysunrecog@*/
|
|
}
|
|
else
|
|
ecif.rvalue = rvalue;
|
|
|
|
|
|
switch (cif->abi)
|
|
{
|
|
case FFI_SYSV:
|
|
case FFI_GCC_SYSV:
|
|
/*@-usedef@*/
|
|
ffi_call_SYSV(&ecif, -cif->bytes,
|
|
cif->flags, ecif.rvalue, fn);
|
|
/*@=usedef@*/
|
|
break;
|
|
default:
|
|
FFI_ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void flush_icache(char *, int);
|
|
|
|
ffi_status
|
|
ffi_prep_closure (ffi_closure* closure,
|
|
ffi_cif* cif,
|
|
void (*fun)(ffi_cif*, void*, void**, void*),
|
|
void *user_data)
|
|
{
|
|
unsigned int *tramp;
|
|
|
|
FFI_ASSERT (cif->abi == FFI_GCC_SYSV);
|
|
|
|
tramp = (unsigned int *) &closure->tramp[0];
|
|
tramp[0] = 0x7c0802a6; /* mflr r0 */
|
|
tramp[1] = 0x4800000d; /* bl 10 <trampoline_initial+0x10> */
|
|
tramp[4] = 0x7d6802a6; /* mflr r11 */
|
|
tramp[5] = 0x7c0803a6; /* mtlr r0 */
|
|
tramp[6] = 0x800b0000; /* lwz r0,0(r11) */
|
|
tramp[7] = 0x816b0004; /* lwz r11,4(r11) */
|
|
tramp[8] = 0x7c0903a6; /* mtctr r0 */
|
|
tramp[9] = 0x4e800420; /* bctr */
|
|
*(void **) &tramp[2] = (void *)ffi_closure_SYSV; /* function */
|
|
*(void **) &tramp[3] = (void *)closure; /* context */
|
|
|
|
closure->cif = cif;
|
|
closure->fun = fun;
|
|
closure->user_data = user_data;
|
|
|
|
/* Flush the icache. */
|
|
flush_icache(&closure->tramp[0],FFI_TRAMPOLINE_SIZE);
|
|
|
|
return FFI_OK;
|
|
}
|
|
|
|
|
|
#define MIN_CACHE_LINE_SIZE 8
|
|
|
|
static void flush_icache(char * addr1, int size)
|
|
{
|
|
int i;
|
|
char * addr;
|
|
for (i = 0; i < size; i += MIN_CACHE_LINE_SIZE) {
|
|
addr = addr1 + i;
|
|
__asm__ volatile ("icbi 0,%0;" "dcbf 0,%0;" : : "r"(addr) : "memory");
|
|
}
|
|
addr = addr1 + size - 1;
|
|
__asm__ volatile ("icbi 0,%0;" "dcbf 0,%0;" "sync;" "isync;" : : "r"(addr) : "memory");
|
|
}
|
|
|
|
|
|
int ffi_closure_helper_SYSV (ffi_closure*, void*, unsigned long*,
|
|
unsigned long*, unsigned long*);
|
|
|
|
/* Basically the trampoline invokes ffi_closure_SYSV, and on
|
|
* entry, r11 holds the address of the closure.
|
|
* After storing the registers that could possibly contain
|
|
* parameters to be passed into the stack frame and setting
|
|
* up space for a return value, ffi_closure_SYSV invokes the
|
|
* following helper function to do most of the work
|
|
*/
|
|
|
|
int
|
|
ffi_closure_helper_SYSV (ffi_closure* closure, void * rvalue,
|
|
unsigned long * pgr, unsigned long * pfr,
|
|
unsigned long * pst)
|
|
{
|
|
/* rvalue is the pointer to space for return value in closure assembly */
|
|
/* pgr is the pointer to where r3-r10 are stored in ffi_closure_SYSV */
|
|
/* pfr is the pointer to where f1-f8 are stored in ffi_closure_SYSV */
|
|
/* pst is the pointer to outgoing parameter stack in original caller */
|
|
|
|
void ** avalue;
|
|
ffi_type ** arg_types;
|
|
long i, avn;
|
|
long nf; /* number of floating registers already used */
|
|
long ng; /* number of general registers already used */
|
|
ffi_cif * cif;
|
|
double temp;
|
|
|
|
cif = closure->cif;
|
|
avalue = alloca(cif->nargs * sizeof(void *));
|
|
|
|
nf = 0;
|
|
ng = 0;
|
|
|
|
/* Copy the caller's structure return value address so that the closure
|
|
returns the data directly to the caller. */
|
|
if (cif->rtype->type == FFI_TYPE_STRUCT)
|
|
{
|
|
rvalue = *pgr;
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
|
|
i = 0;
|
|
avn = cif->nargs;
|
|
arg_types = cif->arg_types;
|
|
|
|
/* Grab the addresses of the arguments from the stack frame. */
|
|
while (i < avn)
|
|
{
|
|
switch (arg_types[i]->type)
|
|
{
|
|
case FFI_TYPE_SINT8:
|
|
case FFI_TYPE_UINT8:
|
|
/* there are 8 gpr registers used to pass values */
|
|
if (ng < 8) {
|
|
avalue[i] = (((char *)pgr)+3);
|
|
ng++;
|
|
pgr++;
|
|
} else {
|
|
avalue[i] = (((char *)pst)+3);
|
|
pst++;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_SINT16:
|
|
case FFI_TYPE_UINT16:
|
|
/* there are 8 gpr registers used to pass values */
|
|
if (ng < 8) {
|
|
avalue[i] = (((char *)pgr)+2);
|
|
ng++;
|
|
pgr++;
|
|
} else {
|
|
avalue[i] = (((char *)pst)+2);
|
|
pst++;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_SINT32:
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_POINTER:
|
|
case FFI_TYPE_STRUCT:
|
|
/* there are 8 gpr registers used to pass values */
|
|
if (ng < 8) {
|
|
avalue[i] = pgr;
|
|
ng++;
|
|
pgr++;
|
|
} else {
|
|
avalue[i] = pst;
|
|
pst++;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_SINT64:
|
|
case FFI_TYPE_UINT64:
|
|
/* passing long long ints are complex, they must
|
|
* be passed in suitable register pairs such as
|
|
* (r3,r4) or (r5,r6) or (r6,r7), or (r7,r8) or (r9,r10)
|
|
* and if the entire pair aren't available then the outgoing
|
|
* parameter stack is used for both but an alignment of 8
|
|
* must will be kept. So we must either look in pgr
|
|
* or pst to find the correct address for this type
|
|
* of parameter.
|
|
*/
|
|
if (ng < 7) {
|
|
if (ng & 0x01) {
|
|
/* skip r4, r6, r8 as starting points */
|
|
ng++;
|
|
pgr++;
|
|
}
|
|
avalue[i] = pgr;
|
|
ng+=2;
|
|
pgr+=2;
|
|
} else {
|
|
if (((long)pst) & 4) pst++;
|
|
avalue[i] = pst;
|
|
pst+=2;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_FLOAT:
|
|
/* unfortunately float values are stored as doubles
|
|
* in the ffi_closure_SYSV code (since we don't check
|
|
* the type in that routine). This is also true
|
|
* of floats passed on the outgoing parameter stack.
|
|
* Also, on the outgoing stack all values are aligned
|
|
* to 8
|
|
*
|
|
* Don't you just love the simplicity of this ABI!
|
|
*/
|
|
|
|
/* there are 8 64bit floating point registers */
|
|
|
|
if (nf < 8) {
|
|
temp = *(double*)pfr;
|
|
*(float*)pfr = (float)temp;
|
|
avalue[i] = pfr;
|
|
nf++;
|
|
pfr+=2;
|
|
} else {
|
|
/* FIXME? here we are really changing the values
|
|
* stored in the original calling routines outgoing
|
|
* parameter stack. This is probably a really
|
|
* naughty thing to do but...
|
|
*/
|
|
if (((long)pst) & 4) pst++;
|
|
temp = *(double*)pst;
|
|
*(float*)pst = (float)temp;
|
|
avalue[i] = pst;
|
|
nf++;
|
|
pst+=2;
|
|
}
|
|
break;
|
|
|
|
case FFI_TYPE_DOUBLE:
|
|
/* On the outgoing stack all values are aligned to 8 */
|
|
/* there are 8 64bit floating point registers */
|
|
|
|
if (nf < 8) {
|
|
avalue[i] = pfr;
|
|
nf++;
|
|
pfr+=2;
|
|
} else {
|
|
if (((long)pst) & 4) pst++;
|
|
avalue[i] = pst;
|
|
nf++;
|
|
pst+=2;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
FFI_ASSERT(0);
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
|
|
(closure->fun) (cif, rvalue, avalue, closure->user_data);
|
|
|
|
/* Tell ffi_closure_osf how to perform return type promotions. */
|
|
return cif->rtype->type;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|