2119 lines
63 KiB
C
2119 lines
63 KiB
C
/*
|
||
* tkCanvArc.c --
|
||
*
|
||
* This file implements arc items for canvas widgets.
|
||
*
|
||
* Copyright (c) 1992-1994 The Regents of the University of California.
|
||
* Copyright (c) 1994-1997 Sun Microsystems, Inc.
|
||
*
|
||
* See the file "license.terms" for information on usage and redistribution of
|
||
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
|
||
*/
|
||
|
||
#include "tkInt.h"
|
||
#include "tkCanvas.h"
|
||
#include "default.h"
|
||
|
||
/*
|
||
* The structure below defines the record for each arc item.
|
||
*/
|
||
|
||
typedef enum {
|
||
PIESLICE_STYLE, CHORD_STYLE, ARC_STYLE
|
||
} Style;
|
||
|
||
typedef struct ArcItem {
|
||
Tk_Item header; /* Generic stuff that's the same for all
|
||
* types. MUST BE FIRST IN STRUCTURE. */
|
||
Tk_Outline outline; /* Outline structure */
|
||
double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding
|
||
* box for oval of which arc is a piece. */
|
||
double start; /* Angle at which arc begins, in degrees
|
||
* between 0 and 360. */
|
||
double extent; /* Extent of arc (angular distance from start
|
||
* to end of arc) in degrees between -360 and
|
||
* 360. */
|
||
double *outlinePtr; /* Points to (x,y) coordinates for points that
|
||
* define one or two closed polygons
|
||
* representing the portion of the outline
|
||
* that isn't part of the arc (the V-shape for
|
||
* a pie slice or a line-like segment for a
|
||
* chord). Malloc'ed. */
|
||
int numOutlinePoints; /* Number of points at outlinePtr. Zero means
|
||
* no space allocated. */
|
||
Tk_TSOffset tsoffset;
|
||
XColor *fillColor; /* Color for filling arc (used for drawing
|
||
* outline too when style is "arc"). NULL
|
||
* means don't fill arc. */
|
||
XColor *activeFillColor; /* Color for filling arc (used for drawing
|
||
* outline too when style is "arc" and state
|
||
* is "active"). NULL means use fillColor. */
|
||
XColor *disabledFillColor; /* Color for filling arc (used for drawing
|
||
* outline too when style is "arc" and state
|
||
* is "disabled". NULL means use fillColor */
|
||
Pixmap fillStipple; /* Stipple bitmap for filling item. */
|
||
Pixmap activeFillStipple; /* Stipple bitmap for filling item if state is
|
||
* active. */
|
||
Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state is
|
||
* disabled. */
|
||
Style style; /* How to draw arc: arc, chord, or
|
||
* pieslice. */
|
||
GC fillGC; /* Graphics context for filling item. */
|
||
double center1[2]; /* Coordinates of center of arc outline at
|
||
* start (see ComputeArcOutline). */
|
||
double center2[2]; /* Coordinates of center of arc outline at
|
||
* start+extent (see ComputeArcOutline). */
|
||
} ArcItem;
|
||
|
||
/*
|
||
* The definitions below define the sizes of the polygons used to display
|
||
* outline information for various styles of arcs:
|
||
*/
|
||
|
||
#define CHORD_OUTLINE_PTS 7
|
||
#define PIE_OUTLINE1_PTS 6
|
||
#define PIE_OUTLINE2_PTS 7
|
||
|
||
/*
|
||
* Information used for parsing configuration specs:
|
||
*/
|
||
|
||
static int StyleParseProc(ClientData clientData, Tcl_Interp *interp,
|
||
Tk_Window tkwin, const char *value,
|
||
char *widgRec, int offset);
|
||
static const char * StylePrintProc(ClientData clientData, Tk_Window tkwin,
|
||
char *widgRec, int offset, Tcl_FreeProc **freeProcPtr);
|
||
|
||
static const Tk_CustomOption stateOption = {
|
||
TkStateParseProc, TkStatePrintProc, INT2PTR(2)
|
||
};
|
||
static const Tk_CustomOption styleOption = {
|
||
StyleParseProc, StylePrintProc, NULL
|
||
};
|
||
static const Tk_CustomOption tagsOption = {
|
||
Tk_CanvasTagsParseProc, Tk_CanvasTagsPrintProc, NULL
|
||
};
|
||
static const Tk_CustomOption dashOption = {
|
||
TkCanvasDashParseProc, TkCanvasDashPrintProc, NULL
|
||
};
|
||
static const Tk_CustomOption offsetOption = {
|
||
TkOffsetParseProc, TkOffsetPrintProc, INT2PTR(TK_OFFSET_RELATIVE)
|
||
};
|
||
static const Tk_CustomOption pixelOption = {
|
||
TkPixelParseProc, TkPixelPrintProc, NULL
|
||
};
|
||
|
||
static const Tk_ConfigSpec configSpecs[] = {
|
||
{TK_CONFIG_CUSTOM, "-activedash", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.activeDash),
|
||
TK_CONFIG_NULL_OK, &dashOption},
|
||
{TK_CONFIG_COLOR, "-activefill", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, activeFillColor), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_COLOR, "-activeoutline", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.activeColor), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_BITMAP, "-activeoutlinestipple", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.activeStipple), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_BITMAP, "-activestipple", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, activeFillStipple), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_CUSTOM, "-activewidth", NULL, NULL,
|
||
"0.0", Tk_Offset(ArcItem, outline.activeWidth),
|
||
TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
|
||
{TK_CONFIG_CUSTOM, "-dash", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.dash),
|
||
TK_CONFIG_NULL_OK, &dashOption},
|
||
{TK_CONFIG_PIXELS, "-dashoffset", NULL, NULL,
|
||
"0", Tk_Offset(ArcItem, outline.offset), TK_CONFIG_DONT_SET_DEFAULT, NULL},
|
||
{TK_CONFIG_CUSTOM, "-disableddash", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.disabledDash),
|
||
TK_CONFIG_NULL_OK, &dashOption},
|
||
{TK_CONFIG_COLOR, "-disabledfill", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, disabledFillColor), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_COLOR, "-disabledoutline", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.disabledColor), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_BITMAP, "-disabledoutlinestipple", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.disabledStipple), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_BITMAP, "-disabledstipple", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, disabledFillStipple), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_CUSTOM, "-disabledwidth", NULL, NULL,
|
||
"0.0", Tk_Offset(ArcItem, outline.disabledWidth),
|
||
TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
|
||
{TK_CONFIG_DOUBLE, "-extent", NULL, NULL,
|
||
"90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT, NULL},
|
||
{TK_CONFIG_COLOR, "-fill", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_CUSTOM, "-offset", NULL, NULL,
|
||
"0,0", Tk_Offset(ArcItem, tsoffset),
|
||
TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
|
||
{TK_CONFIG_COLOR, "-outline", NULL, NULL,
|
||
DEF_CANVITEM_OUTLINE, Tk_Offset(ArcItem, outline.color), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_CUSTOM, "-outlineoffset", NULL, NULL,
|
||
"0,0", Tk_Offset(ArcItem, outline.tsoffset),
|
||
TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
|
||
{TK_CONFIG_BITMAP, "-outlinestipple", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, outline.stipple), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_DOUBLE, "-start", NULL, NULL,
|
||
"0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT, NULL},
|
||
{TK_CONFIG_CUSTOM, "-state", NULL, NULL,
|
||
NULL, Tk_Offset(Tk_Item, state), TK_CONFIG_NULL_OK, &stateOption},
|
||
{TK_CONFIG_BITMAP, "-stipple", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK, NULL},
|
||
{TK_CONFIG_CUSTOM, "-style", NULL, NULL,
|
||
NULL, Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT,
|
||
&styleOption},
|
||
{TK_CONFIG_CUSTOM, "-tags", NULL, NULL,
|
||
NULL, 0, TK_CONFIG_NULL_OK, &tagsOption},
|
||
{TK_CONFIG_CUSTOM, "-width", NULL, NULL,
|
||
"1.0", Tk_Offset(ArcItem, outline.width), TK_CONFIG_DONT_SET_DEFAULT,
|
||
&pixelOption},
|
||
{TK_CONFIG_END, NULL, NULL, NULL, NULL, 0, 0, NULL}
|
||
};
|
||
|
||
/*
|
||
* Prototypes for functions defined in this file:
|
||
*/
|
||
|
||
static void ComputeArcBbox(Tk_Canvas canvas, ArcItem *arcPtr);
|
||
static int ConfigureArc(Tcl_Interp *interp,
|
||
Tk_Canvas canvas, Tk_Item *itemPtr, int objc,
|
||
Tcl_Obj *const objv[], int flags);
|
||
static int CreateArc(Tcl_Interp *interp,
|
||
Tk_Canvas canvas, struct Tk_Item *itemPtr,
|
||
int objc, Tcl_Obj *const objv[]);
|
||
static void DeleteArc(Tk_Canvas canvas,
|
||
Tk_Item *itemPtr, Display *display);
|
||
static void DisplayArc(Tk_Canvas canvas,
|
||
Tk_Item *itemPtr, Display *display, Drawable dst,
|
||
int x, int y, int width, int height);
|
||
static int ArcCoords(Tcl_Interp *interp, Tk_Canvas canvas,
|
||
Tk_Item *itemPtr, int objc, Tcl_Obj *const objv[]);
|
||
static int ArcToArea(Tk_Canvas canvas,
|
||
Tk_Item *itemPtr, double *rectPtr);
|
||
static double ArcToPoint(Tk_Canvas canvas,
|
||
Tk_Item *itemPtr, double *coordPtr);
|
||
static int ArcToPostscript(Tcl_Interp *interp,
|
||
Tk_Canvas canvas, Tk_Item *itemPtr, int prepass);
|
||
static void ScaleArc(Tk_Canvas canvas,
|
||
Tk_Item *itemPtr, double originX, double originY,
|
||
double scaleX, double scaleY);
|
||
static void TranslateArc(Tk_Canvas canvas,
|
||
Tk_Item *itemPtr, double deltaX, double deltaY);
|
||
static int AngleInRange(double x, double y,
|
||
double start, double extent);
|
||
static void ComputeArcOutline(Tk_Canvas canvas, ArcItem *arcPtr);
|
||
static int HorizLineToArc(double x1, double x2,
|
||
double y, double rx, double ry,
|
||
double start, double extent);
|
||
static int VertLineToArc(double x, double y1,
|
||
double y2, double rx, double ry,
|
||
double start, double extent);
|
||
|
||
/*
|
||
* The structures below defines the arc item types by means of functions that
|
||
* can be invoked by generic item code.
|
||
*/
|
||
|
||
Tk_ItemType tkArcType = {
|
||
"arc", /* name */
|
||
sizeof(ArcItem), /* itemSize */
|
||
CreateArc, /* createProc */
|
||
configSpecs, /* configSpecs */
|
||
ConfigureArc, /* configureProc */
|
||
ArcCoords, /* coordProc */
|
||
DeleteArc, /* deleteProc */
|
||
DisplayArc, /* displayProc */
|
||
TK_CONFIG_OBJS, /* flags */
|
||
ArcToPoint, /* pointProc */
|
||
ArcToArea, /* areaProc */
|
||
ArcToPostscript, /* postscriptProc */
|
||
ScaleArc, /* scaleProc */
|
||
TranslateArc, /* translateProc */
|
||
NULL, /* indexProc */
|
||
NULL, /* icursorProc */
|
||
NULL, /* selectionProc */
|
||
NULL, /* insertProc */
|
||
NULL, /* dTextProc */
|
||
NULL, /* nextPtr */
|
||
NULL, 0, NULL, NULL
|
||
};
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* CreateArc --
|
||
*
|
||
* This function is invoked to create a new arc item in a canvas.
|
||
*
|
||
* Results:
|
||
* A standard Tcl return value. If an error occurred in creating the
|
||
* item, then an error message is left in the interp's result; in this
|
||
* case itemPtr is left uninitialized, so it can be safely freed by the
|
||
* caller.
|
||
*
|
||
* Side effects:
|
||
* A new arc item is created.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
CreateArc(
|
||
Tcl_Interp *interp, /* Interpreter for error reporting. */
|
||
Tk_Canvas canvas, /* Canvas to hold new item. */
|
||
Tk_Item *itemPtr, /* Record to hold new item; header has been
|
||
* initialized by caller. */
|
||
int objc, /* Number of arguments in objv. */
|
||
Tcl_Obj *const objv[]) /* Arguments describing arc. */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
int i;
|
||
|
||
if (objc == 0) {
|
||
Tcl_Panic("canvas did not pass any coords");
|
||
}
|
||
|
||
/*
|
||
* Carry out initialization that is needed in order to clean up after
|
||
* errors during the the remainder of this function.
|
||
*/
|
||
|
||
Tk_CreateOutline(&(arcPtr->outline));
|
||
arcPtr->start = 0;
|
||
arcPtr->extent = 90;
|
||
arcPtr->outlinePtr = NULL;
|
||
arcPtr->numOutlinePoints = 0;
|
||
arcPtr->tsoffset.flags = 0;
|
||
arcPtr->tsoffset.xoffset = 0;
|
||
arcPtr->tsoffset.yoffset = 0;
|
||
arcPtr->fillColor = NULL;
|
||
arcPtr->activeFillColor = NULL;
|
||
arcPtr->disabledFillColor = NULL;
|
||
arcPtr->fillStipple = None;
|
||
arcPtr->activeFillStipple = None;
|
||
arcPtr->disabledFillStipple = None;
|
||
arcPtr->style = PIESLICE_STYLE;
|
||
arcPtr->fillGC = NULL;
|
||
|
||
/*
|
||
* Process the arguments to fill in the item record.
|
||
*/
|
||
|
||
for (i = 1; i < objc; i++) {
|
||
const char *arg = Tcl_GetString(objv[i]);
|
||
|
||
if ((arg[0] == '-') && (arg[1] >= 'a') && (arg[1] <= 'z')) {
|
||
break;
|
||
}
|
||
}
|
||
if (ArcCoords(interp, canvas, itemPtr, i, objv) != TCL_OK) {
|
||
goto error;
|
||
}
|
||
if (ConfigureArc(interp, canvas, itemPtr, objc-i, objv+i, 0) == TCL_OK) {
|
||
return TCL_OK;
|
||
}
|
||
|
||
error:
|
||
DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas)));
|
||
return TCL_ERROR;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ArcCoords --
|
||
*
|
||
* This function is invoked to process the "coords" widget command on
|
||
* arcs. See the user documentation for details on what it does.
|
||
*
|
||
* Results:
|
||
* Returns TCL_OK or TCL_ERROR, and sets the interp's result.
|
||
*
|
||
* Side effects:
|
||
* The coordinates for the given item may be changed.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
ArcCoords(
|
||
Tcl_Interp *interp, /* Used for error reporting. */
|
||
Tk_Canvas canvas, /* Canvas containing item. */
|
||
Tk_Item *itemPtr, /* Item whose coordinates are to be read or
|
||
* modified. */
|
||
int objc, /* Number of coordinates supplied in objv. */
|
||
Tcl_Obj *const objv[]) /* Array of coordinates: x1, y1, x2, y2, ... */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
|
||
if (objc == 0) {
|
||
Tcl_Obj *objs[4];
|
||
|
||
objs[0] = Tcl_NewDoubleObj(arcPtr->bbox[0]);
|
||
objs[1] = Tcl_NewDoubleObj(arcPtr->bbox[1]);
|
||
objs[2] = Tcl_NewDoubleObj(arcPtr->bbox[2]);
|
||
objs[3] = Tcl_NewDoubleObj(arcPtr->bbox[3]);
|
||
Tcl_SetObjResult(interp, Tcl_NewListObj(4, objs));
|
||
} else if ((objc == 1) || (objc == 4)) {
|
||
if (objc == 1) {
|
||
if (Tcl_ListObjGetElements(interp, objv[0], &objc,
|
||
(Tcl_Obj ***) &objv) != TCL_OK) {
|
||
return TCL_ERROR;
|
||
} else if (objc != 4) {
|
||
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
|
||
"wrong # coordinates: expected 4, got %d", objc));
|
||
Tcl_SetErrorCode(interp, "TK", "CANVAS", "COORDS", "ARC",
|
||
NULL);
|
||
return TCL_ERROR;
|
||
}
|
||
}
|
||
if ((Tk_CanvasGetCoordFromObj(interp, canvas, objv[0],
|
||
&arcPtr->bbox[0]) != TCL_OK)
|
||
|| (Tk_CanvasGetCoordFromObj(interp, canvas, objv[1],
|
||
&arcPtr->bbox[1]) != TCL_OK)
|
||
|| (Tk_CanvasGetCoordFromObj(interp, canvas, objv[2],
|
||
&arcPtr->bbox[2]) != TCL_OK)
|
||
|| (Tk_CanvasGetCoordFromObj(interp, canvas, objv[3],
|
||
&arcPtr->bbox[3]) != TCL_OK)) {
|
||
return TCL_ERROR;
|
||
}
|
||
ComputeArcBbox(canvas, arcPtr);
|
||
} else {
|
||
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
|
||
"wrong # coordinates: expected 0 or 4, got %d", objc));
|
||
Tcl_SetErrorCode(interp, "TK", "CANVAS", "COORDS", "ARC", NULL);
|
||
return TCL_ERROR;
|
||
}
|
||
return TCL_OK;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ConfigureArc --
|
||
*
|
||
* This function is invoked to configure various aspects of a arc item,
|
||
* such as its outline and fill colors.
|
||
*
|
||
* Results:
|
||
* A standard Tcl result code. If an error occurs, then an error message
|
||
* is left in the interp's result.
|
||
*
|
||
* Side effects:
|
||
* Configuration information, such as colors and stipple patterns, may be
|
||
* set for itemPtr.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
ConfigureArc(
|
||
Tcl_Interp *interp, /* Used for error reporting. */
|
||
Tk_Canvas canvas, /* Canvas containing itemPtr. */
|
||
Tk_Item *itemPtr, /* Arc item to reconfigure. */
|
||
int objc, /* Number of elements in objv. */
|
||
Tcl_Obj *const objv[], /* Arguments describing things to configure. */
|
||
int flags) /* Flags to pass to Tk_ConfigureWidget. */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
XGCValues gcValues;
|
||
GC newGC;
|
||
unsigned long mask;
|
||
int i;
|
||
Tk_Window tkwin;
|
||
Tk_TSOffset *tsoffset;
|
||
XColor *color;
|
||
Pixmap stipple;
|
||
Tk_State state;
|
||
|
||
tkwin = Tk_CanvasTkwin(canvas);
|
||
if (TCL_OK != Tk_ConfigureWidget(interp, tkwin, configSpecs, objc,
|
||
(const char **) objv, (char *) arcPtr, flags|TK_CONFIG_OBJS)) {
|
||
return TCL_ERROR;
|
||
}
|
||
|
||
state = itemPtr->state;
|
||
|
||
/*
|
||
* A few of the options require additional processing, such as style and
|
||
* graphics contexts.
|
||
*/
|
||
|
||
if (arcPtr->outline.activeWidth > arcPtr->outline.width ||
|
||
arcPtr->outline.activeDash.number != 0 ||
|
||
arcPtr->outline.activeColor != NULL ||
|
||
arcPtr->outline.activeStipple != None ||
|
||
arcPtr->activeFillColor != NULL ||
|
||
arcPtr->activeFillStipple != None) {
|
||
itemPtr->redraw_flags |= TK_ITEM_STATE_DEPENDANT;
|
||
} else {
|
||
itemPtr->redraw_flags &= ~TK_ITEM_STATE_DEPENDANT;
|
||
}
|
||
|
||
tsoffset = &arcPtr->outline.tsoffset;
|
||
flags = tsoffset->flags;
|
||
if (flags & TK_OFFSET_LEFT) {
|
||
tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
|
||
} else if (flags & TK_OFFSET_CENTER) {
|
||
tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
|
||
} else if (flags & TK_OFFSET_RIGHT) {
|
||
tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
|
||
}
|
||
if (flags & TK_OFFSET_TOP) {
|
||
tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
|
||
} else if (flags & TK_OFFSET_MIDDLE) {
|
||
tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
|
||
} else if (flags & TK_OFFSET_BOTTOM) {
|
||
tsoffset->yoffset = (int) (arcPtr->bbox[2] + 0.5);
|
||
}
|
||
|
||
i = (int) (arcPtr->start/360.0);
|
||
arcPtr->start -= i*360.0;
|
||
if (arcPtr->start < 0) {
|
||
arcPtr->start += 360.0;
|
||
}
|
||
i = (int) (arcPtr->extent/360.0);
|
||
arcPtr->extent -= i*360.0;
|
||
|
||
mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, &(arcPtr->outline));
|
||
if (mask) {
|
||
gcValues.cap_style = CapButt;
|
||
mask |= GCCapStyle;
|
||
newGC = Tk_GetGC(tkwin, mask, &gcValues);
|
||
} else {
|
||
newGC = NULL;
|
||
}
|
||
if (arcPtr->outline.gc != NULL) {
|
||
Tk_FreeGC(Tk_Display(tkwin), arcPtr->outline.gc);
|
||
}
|
||
arcPtr->outline.gc = newGC;
|
||
|
||
if(state == TK_STATE_NULL) {
|
||
state = Canvas(canvas)->canvas_state;
|
||
}
|
||
if (state==TK_STATE_HIDDEN) {
|
||
ComputeArcBbox(canvas, arcPtr);
|
||
return TCL_OK;
|
||
}
|
||
|
||
color = arcPtr->fillColor;
|
||
stipple = arcPtr->fillStipple;
|
||
if (Canvas(canvas)->currentItemPtr == itemPtr) {
|
||
if (arcPtr->activeFillColor!=NULL) {
|
||
color = arcPtr->activeFillColor;
|
||
}
|
||
if (arcPtr->activeFillStipple!=None) {
|
||
stipple = arcPtr->activeFillStipple;
|
||
}
|
||
} else if (state==TK_STATE_DISABLED) {
|
||
if (arcPtr->disabledFillColor!=NULL) {
|
||
color = arcPtr->disabledFillColor;
|
||
}
|
||
if (arcPtr->disabledFillStipple!=None) {
|
||
stipple = arcPtr->disabledFillStipple;
|
||
}
|
||
}
|
||
|
||
if (arcPtr->style == ARC_STYLE) {
|
||
newGC = NULL;
|
||
} else if (color == NULL) {
|
||
newGC = NULL;
|
||
} else {
|
||
gcValues.foreground = color->pixel;
|
||
if (arcPtr->style == CHORD_STYLE) {
|
||
gcValues.arc_mode = ArcChord;
|
||
} else {
|
||
gcValues.arc_mode = ArcPieSlice;
|
||
}
|
||
mask = GCForeground|GCArcMode;
|
||
if (stipple != None) {
|
||
gcValues.stipple = stipple;
|
||
gcValues.fill_style = FillStippled;
|
||
mask |= GCStipple|GCFillStyle;
|
||
}
|
||
newGC = Tk_GetGC(tkwin, mask, &gcValues);
|
||
}
|
||
if (arcPtr->fillGC != NULL) {
|
||
Tk_FreeGC(Tk_Display(tkwin), arcPtr->fillGC);
|
||
}
|
||
arcPtr->fillGC = newGC;
|
||
|
||
tsoffset = &arcPtr->tsoffset;
|
||
flags = tsoffset->flags;
|
||
if (flags & TK_OFFSET_LEFT) {
|
||
tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
|
||
} else if (flags & TK_OFFSET_CENTER) {
|
||
tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
|
||
} else if (flags & TK_OFFSET_RIGHT) {
|
||
tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
|
||
}
|
||
if (flags & TK_OFFSET_TOP) {
|
||
tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
|
||
} else if (flags & TK_OFFSET_MIDDLE) {
|
||
tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
|
||
} else if (flags & TK_OFFSET_BOTTOM) {
|
||
tsoffset->yoffset = (int) (arcPtr->bbox[3] + 0.5);
|
||
}
|
||
|
||
ComputeArcBbox(canvas, arcPtr);
|
||
return TCL_OK;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* DeleteArc --
|
||
*
|
||
* This function is called to clean up the data structure associated with
|
||
* an arc item.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* Resources associated with itemPtr are released.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static void
|
||
DeleteArc(
|
||
TCL_UNUSED(Tk_Canvas), /* Info about overall canvas. */
|
||
Tk_Item *itemPtr, /* Item that is being deleted. */
|
||
Display *display) /* Display containing window for canvas. */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *)itemPtr;
|
||
|
||
Tk_DeleteOutline(display, &(arcPtr->outline));
|
||
if (arcPtr->numOutlinePoints != 0) {
|
||
ckfree(arcPtr->outlinePtr);
|
||
}
|
||
if (arcPtr->fillColor != NULL) {
|
||
Tk_FreeColor(arcPtr->fillColor);
|
||
}
|
||
if (arcPtr->activeFillColor != NULL) {
|
||
Tk_FreeColor(arcPtr->activeFillColor);
|
||
}
|
||
if (arcPtr->disabledFillColor != NULL) {
|
||
Tk_FreeColor(arcPtr->disabledFillColor);
|
||
}
|
||
if (arcPtr->fillStipple != None) {
|
||
Tk_FreeBitmap(display, arcPtr->fillStipple);
|
||
}
|
||
if (arcPtr->activeFillStipple != None) {
|
||
Tk_FreeBitmap(display, arcPtr->activeFillStipple);
|
||
}
|
||
if (arcPtr->disabledFillStipple != None) {
|
||
Tk_FreeBitmap(display, arcPtr->disabledFillStipple);
|
||
}
|
||
if (arcPtr->fillGC != NULL) {
|
||
Tk_FreeGC(display, arcPtr->fillGC);
|
||
}
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ComputeArcBbox --
|
||
*
|
||
* This function is invoked to compute the bounding box of all the pixels
|
||
* that may be drawn as part of an arc.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* The fields x1, y1, x2, and y2 are updated in the header for itemPtr.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static void
|
||
ComputeArcBbox(
|
||
Tk_Canvas canvas, /* Canvas that contains item. */
|
||
ArcItem *arcPtr) /* Item whose bbox is to be recomputed. */
|
||
{
|
||
double tmp, center[2], point[2];
|
||
double width;
|
||
Tk_State state = arcPtr->header.state;
|
||
|
||
if (state == TK_STATE_NULL) {
|
||
state = Canvas(canvas)->canvas_state;
|
||
}
|
||
|
||
width = arcPtr->outline.width;
|
||
if (width < 1.0) {
|
||
width = 1.0;
|
||
}
|
||
if (state==TK_STATE_HIDDEN) {
|
||
arcPtr->header.x1 = arcPtr->header.x2 =
|
||
arcPtr->header.y1 = arcPtr->header.y2 = -1;
|
||
return;
|
||
} else if (Canvas(canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
|
||
if (arcPtr->outline.activeWidth>width) {
|
||
width = arcPtr->outline.activeWidth;
|
||
}
|
||
} else if (state==TK_STATE_DISABLED) {
|
||
if (arcPtr->outline.disabledWidth>0) {
|
||
width = arcPtr->outline.disabledWidth;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Make sure that the first coordinates are the lowest ones.
|
||
*/
|
||
|
||
if (arcPtr->bbox[1] > arcPtr->bbox[3]) {
|
||
tmp = arcPtr->bbox[3];
|
||
|
||
arcPtr->bbox[3] = arcPtr->bbox[1];
|
||
arcPtr->bbox[1] = tmp;
|
||
}
|
||
if (arcPtr->bbox[0] > arcPtr->bbox[2]) {
|
||
tmp = arcPtr->bbox[2];
|
||
|
||
arcPtr->bbox[2] = arcPtr->bbox[0];
|
||
arcPtr->bbox[0] = tmp;
|
||
}
|
||
|
||
ComputeArcOutline(canvas,arcPtr);
|
||
|
||
/*
|
||
* To compute the bounding box, start with the bbox formed by the two
|
||
* endpoints of the arc. Then add in the center of the arc's oval (if
|
||
* relevant) and the 3-o'clock, 6-o'clock, 9-o'clock, and 12-o'clock
|
||
* positions, if they are relevant.
|
||
*/
|
||
|
||
arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0];
|
||
arcPtr->header.y1 = arcPtr->header.y2 = (int) arcPtr->center1[1];
|
||
TkIncludePoint((Tk_Item *) arcPtr, arcPtr->center2);
|
||
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2;
|
||
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2;
|
||
if (arcPtr->style == PIESLICE_STYLE) {
|
||
TkIncludePoint((Tk_Item *) arcPtr, center);
|
||
}
|
||
|
||
tmp = -arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
point[0] = arcPtr->bbox[2];
|
||
point[1] = center[1];
|
||
TkIncludePoint((Tk_Item *) arcPtr, point);
|
||
}
|
||
tmp = 90.0 - arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
point[0] = center[0];
|
||
point[1] = arcPtr->bbox[1];
|
||
TkIncludePoint((Tk_Item *) arcPtr, point);
|
||
}
|
||
tmp = 180.0 - arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
point[0] = arcPtr->bbox[0];
|
||
point[1] = center[1];
|
||
TkIncludePoint((Tk_Item *) arcPtr, point);
|
||
}
|
||
tmp = 270.0 - arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
point[0] = center[0];
|
||
point[1] = arcPtr->bbox[3];
|
||
TkIncludePoint((Tk_Item *) arcPtr, point);
|
||
}
|
||
|
||
/*
|
||
* Lastly, expand by the width of the arc (if the arc's outline is being
|
||
* drawn) and add one extra pixel just for safety.
|
||
*/
|
||
|
||
if (arcPtr->outline.gc == NULL) {
|
||
tmp = 1;
|
||
} else {
|
||
tmp = (int) ((width + 1.0)/2.0 + 1);
|
||
}
|
||
arcPtr->header.x1 -= (int) tmp;
|
||
arcPtr->header.y1 -= (int) tmp;
|
||
arcPtr->header.x2 += (int) tmp;
|
||
arcPtr->header.y2 += (int) tmp;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* DisplayArc --
|
||
*
|
||
* This function is invoked to draw an arc item in a given drawable.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* ItemPtr is drawn in drawable using the transformation information in
|
||
* canvas.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static void
|
||
DisplayArc(
|
||
Tk_Canvas canvas, /* Canvas that contains item. */
|
||
Tk_Item *itemPtr, /* Item to be displayed. */
|
||
Display *display, /* Display on which to draw item. */
|
||
Drawable drawable, /* Pixmap or window in which to draw item. */
|
||
TCL_UNUSED(int), /* Describes region of canvas that must be */
|
||
TCL_UNUSED(int), /* redisplayed (not used). */
|
||
TCL_UNUSED(int),
|
||
TCL_UNUSED(int))
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
short x1, y1, x2, y2;
|
||
int start, extent, dashnumber;
|
||
double lineWidth;
|
||
Tk_State state = itemPtr->state;
|
||
Pixmap stipple;
|
||
|
||
if (state == TK_STATE_NULL) {
|
||
state = Canvas(canvas)->canvas_state;
|
||
}
|
||
lineWidth = arcPtr->outline.width;
|
||
if (lineWidth < 1.0) {
|
||
lineWidth = 1.0;
|
||
}
|
||
dashnumber = arcPtr->outline.dash.number;
|
||
stipple = arcPtr->fillStipple;
|
||
if (Canvas(canvas)->currentItemPtr == itemPtr) {
|
||
if (arcPtr->outline.activeWidth>lineWidth) {
|
||
lineWidth = arcPtr->outline.activeWidth;
|
||
}
|
||
if (arcPtr->outline.activeDash.number != 0) {
|
||
dashnumber = arcPtr->outline.activeDash.number;
|
||
}
|
||
if (arcPtr->activeFillStipple != None) {
|
||
stipple = arcPtr->activeFillStipple;
|
||
}
|
||
} else if (state == TK_STATE_DISABLED) {
|
||
if (arcPtr->outline.disabledWidth > 0) {
|
||
lineWidth = arcPtr->outline.disabledWidth;
|
||
}
|
||
if (arcPtr->outline.disabledDash.number != 0) {
|
||
dashnumber = arcPtr->outline.disabledDash.number;
|
||
}
|
||
if (arcPtr->disabledFillStipple != None) {
|
||
stipple = arcPtr->disabledFillStipple;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Compute the screen coordinates of the bounding box for the item, plus
|
||
* integer values for the angles.
|
||
*/
|
||
|
||
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1],
|
||
&x1, &y1);
|
||
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[2], arcPtr->bbox[3],
|
||
&x2, &y2);
|
||
if (x2 <= x1) {
|
||
x2 = x1+1;
|
||
}
|
||
if (y2 <= y1) {
|
||
y2 = y1+1;
|
||
}
|
||
start = (int) ((64*arcPtr->start) + 0.5);
|
||
extent = (int) ((64*arcPtr->extent) + 0.5);
|
||
|
||
/*
|
||
* Display filled arc first (if wanted), then outline. If the extent is
|
||
* zero then don't invoke XFillArc or XDrawArc, since this causes some
|
||
* window servers to crash and should be a no-op anyway.
|
||
*/
|
||
|
||
if ((arcPtr->fillGC != NULL) && (extent != 0)) {
|
||
if (stipple != None) {
|
||
int w = 0;
|
||
int h = 0;
|
||
Tk_TSOffset *tsoffset = &arcPtr->tsoffset;
|
||
int flags = tsoffset->flags;
|
||
|
||
if (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE)) {
|
||
Tk_SizeOfBitmap(display, stipple, &w, &h);
|
||
if (flags & TK_OFFSET_CENTER) {
|
||
w /= 2;
|
||
} else {
|
||
w = 0;
|
||
}
|
||
if (flags & TK_OFFSET_MIDDLE) {
|
||
h /= 2;
|
||
} else {
|
||
h = 0;
|
||
}
|
||
}
|
||
tsoffset->xoffset -= w;
|
||
tsoffset->yoffset -= h;
|
||
Tk_CanvasSetOffset(canvas, arcPtr->fillGC, tsoffset);
|
||
if (tsoffset) {
|
||
tsoffset->xoffset += w;
|
||
tsoffset->yoffset += h;
|
||
}
|
||
}
|
||
XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (unsigned) (x2-x1),
|
||
(unsigned) (y2-y1), start, extent);
|
||
if (stipple != None) {
|
||
XSetTSOrigin(display, arcPtr->fillGC, 0, 0);
|
||
}
|
||
}
|
||
if (arcPtr->outline.gc != NULL) {
|
||
Tk_ChangeOutlineGC(canvas, itemPtr, &(arcPtr->outline));
|
||
|
||
if (extent != 0) {
|
||
XDrawArc(display, drawable, arcPtr->outline.gc, x1, y1,
|
||
(unsigned) (x2-x1), (unsigned) (y2-y1), start, extent);
|
||
}
|
||
|
||
/*
|
||
* If the outline width is very thin, don't use polygons to draw the
|
||
* linear parts of the outline (this often results in nothing being
|
||
* displayed); just draw lines instead. The same is done if the
|
||
* outline is dashed, because then polygons don't work.
|
||
*/
|
||
|
||
if (lineWidth < 1.5 || dashnumber != 0) {
|
||
Tk_CanvasDrawableCoords(canvas, arcPtr->center1[0],
|
||
arcPtr->center1[1], &x1, &y1);
|
||
Tk_CanvasDrawableCoords(canvas, arcPtr->center2[0],
|
||
arcPtr->center2[1], &x2, &y2);
|
||
|
||
if (arcPtr->style == CHORD_STYLE) {
|
||
XDrawLine(display, drawable, arcPtr->outline.gc,
|
||
x1, y1, x2, y2);
|
||
} else if (arcPtr->style == PIESLICE_STYLE) {
|
||
short cx, cy;
|
||
|
||
Tk_CanvasDrawableCoords(canvas,
|
||
(arcPtr->bbox[0] + arcPtr->bbox[2])/2.0,
|
||
(arcPtr->bbox[1] + arcPtr->bbox[3])/2.0, &cx, &cy);
|
||
XDrawLine(display, drawable, arcPtr->outline.gc,
|
||
cx, cy, x1, y1);
|
||
XDrawLine(display, drawable, arcPtr->outline.gc,
|
||
cx, cy, x2, y2);
|
||
}
|
||
} else {
|
||
if (arcPtr->style == CHORD_STYLE) {
|
||
TkFillPolygon(canvas, arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
||
display, drawable, arcPtr->outline.gc, NULL);
|
||
} else if (arcPtr->style == PIESLICE_STYLE) {
|
||
TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
||
display, drawable, arcPtr->outline.gc, NULL);
|
||
TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
||
PIE_OUTLINE2_PTS, display, drawable,
|
||
arcPtr->outline.gc, NULL);
|
||
}
|
||
}
|
||
|
||
Tk_ResetOutlineGC(canvas, itemPtr, &(arcPtr->outline));
|
||
}
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ArcToPoint --
|
||
*
|
||
* Computes the distance from a given point to a given arc, in canvas
|
||
* units.
|
||
*
|
||
* Results:
|
||
* The return value is 0 if the point whose x and y coordinates are
|
||
* coordPtr[0] and coordPtr[1] is inside the arc. If the point isn't
|
||
* inside the arc then the return value is the distance from the point to
|
||
* the arc. If itemPtr is filled, then anywhere in the interior is
|
||
* considered "inside"; if itemPtr isn't filled, then "inside" means only
|
||
* the area occupied by the outline.
|
||
*
|
||
* Side effects:
|
||
* None.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static double
|
||
ArcToPoint(
|
||
Tk_Canvas canvas, /* Canvas containing item. */
|
||
Tk_Item *itemPtr, /* Item to check against point. */
|
||
double *pointPtr) /* Pointer to x and y coordinates. */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
double vertex[2], pointAngle, diff, dist, newDist;
|
||
double poly[8], polyDist, width, t1, t2;
|
||
int filled, angleInRange;
|
||
Tk_State state = itemPtr->state;
|
||
|
||
if (state == TK_STATE_NULL) {
|
||
state = Canvas(canvas)->canvas_state;
|
||
}
|
||
|
||
width = (double) arcPtr->outline.width;
|
||
if (Canvas(canvas)->currentItemPtr == itemPtr) {
|
||
if (arcPtr->outline.activeWidth>width) {
|
||
width = (double) arcPtr->outline.activeWidth;
|
||
}
|
||
} else if (state == TK_STATE_DISABLED) {
|
||
if (arcPtr->outline.disabledWidth>0) {
|
||
width = (double) arcPtr->outline.disabledWidth;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* See if the point is within the angular range of the arc. Remember, X
|
||
* angles are backwards from the way we'd normally think of them. Also,
|
||
* compensate for any eccentricity of the oval.
|
||
*/
|
||
|
||
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
||
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
||
t1 = arcPtr->bbox[3] - arcPtr->bbox[1];
|
||
if (t1 != 0.0) {
|
||
t1 = (pointPtr[1] - vertex[1]) / t1;
|
||
}
|
||
t2 = arcPtr->bbox[2] - arcPtr->bbox[0];
|
||
if (t2 != 0.0) {
|
||
t2 = (pointPtr[0] - vertex[0]) / t2;
|
||
}
|
||
if ((t1 == 0.0) && (t2 == 0.0)) {
|
||
pointAngle = 0;
|
||
} else {
|
||
pointAngle = -atan2(t1, t2)*180/PI;
|
||
}
|
||
diff = pointAngle - arcPtr->start;
|
||
diff -= ((int) (diff/360.0) * 360.0);
|
||
if (diff < 0) {
|
||
diff += 360.0;
|
||
}
|
||
angleInRange = (diff <= arcPtr->extent) ||
|
||
((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent));
|
||
|
||
/*
|
||
* Now perform different tests depending on what kind of arc we're dealing
|
||
* with.
|
||
*/
|
||
|
||
if (arcPtr->style == ARC_STYLE) {
|
||
if (angleInRange) {
|
||
return TkOvalToPoint(arcPtr->bbox, width, 0, pointPtr);
|
||
}
|
||
dist = hypot(pointPtr[0] - arcPtr->center1[0],
|
||
pointPtr[1] - arcPtr->center1[1]);
|
||
newDist = hypot(pointPtr[0] - arcPtr->center2[0],
|
||
pointPtr[1] - arcPtr->center2[1]);
|
||
if (newDist < dist) {
|
||
return newDist;
|
||
}
|
||
return dist;
|
||
}
|
||
|
||
if ((arcPtr->fillGC != NULL) || (arcPtr->outline.gc == NULL)) {
|
||
filled = 1;
|
||
} else {
|
||
filled = 0;
|
||
}
|
||
if (arcPtr->outline.gc == NULL) {
|
||
width = 0.0;
|
||
}
|
||
|
||
if (arcPtr->style == PIESLICE_STYLE) {
|
||
if (width > 1.0) {
|
||
dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
||
pointPtr);
|
||
newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
||
PIE_OUTLINE2_PTS, pointPtr);
|
||
} else {
|
||
dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr);
|
||
newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr);
|
||
}
|
||
if (newDist < dist) {
|
||
dist = newDist;
|
||
}
|
||
if (angleInRange) {
|
||
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
|
||
if (newDist < dist) {
|
||
dist = newDist;
|
||
}
|
||
}
|
||
return dist;
|
||
}
|
||
|
||
/*
|
||
* This is a chord-style arc. We have to deal specially with the
|
||
* triangular piece that represents the difference between a chord-style
|
||
* arc and a pie-slice arc (for small angles this piece is excluded here
|
||
* where it would be included for pie slices; for large angles the piece
|
||
* is included here but would be excluded for pie slices).
|
||
*/
|
||
|
||
if (width > 1.0) {
|
||
dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
||
pointPtr);
|
||
} else {
|
||
dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr);
|
||
}
|
||
poly[0] = poly[6] = vertex[0];
|
||
poly[1] = poly[7] = vertex[1];
|
||
poly[2] = arcPtr->center1[0];
|
||
poly[3] = arcPtr->center1[1];
|
||
poly[4] = arcPtr->center2[0];
|
||
poly[5] = arcPtr->center2[1];
|
||
polyDist = TkPolygonToPoint(poly, 4, pointPtr);
|
||
if (angleInRange) {
|
||
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)
|
||
|| (polyDist > 0.0)) {
|
||
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
|
||
if (newDist < dist) {
|
||
dist = newDist;
|
||
}
|
||
}
|
||
} else {
|
||
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) {
|
||
if (filled && (polyDist < dist)) {
|
||
dist = polyDist;
|
||
}
|
||
}
|
||
}
|
||
return dist;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ArcToArea --
|
||
*
|
||
* This function is called to determine whether an item lies entirely
|
||
* inside, entirely outside, or overlapping a given area.
|
||
*
|
||
* Results:
|
||
* -1 is returned if the item is entirely outside the area given by
|
||
* rectPtr, 0 if it overlaps, and 1 if it is entirely inside the given
|
||
* area.
|
||
*
|
||
* Side effects:
|
||
* None.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
ArcToArea(
|
||
Tk_Canvas canvas, /* Canvas containing item. */
|
||
Tk_Item *itemPtr, /* Item to check against arc. */
|
||
double *rectPtr) /* Pointer to array of four coordinates (x1,
|
||
* y1, x2, y2) describing rectangular area. */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
double rx, ry; /* Radii for transformed oval: these define an
|
||
* oval centered at the origin. */
|
||
double tRect[4]; /* Transformed version of x1, y1, x2, y2, for
|
||
* coord. system where arc is centered on the
|
||
* origin. */
|
||
double center[2], width, angle, tmp;
|
||
double points[20], *pointPtr;
|
||
int numPoints, filled;
|
||
int inside; /* Non-zero means every test so far suggests
|
||
* that arc is inside rectangle. 0 means every
|
||
* test so far shows arc to be outside of
|
||
* rectangle. */
|
||
int newInside;
|
||
Tk_State state = itemPtr->state;
|
||
|
||
if(state == TK_STATE_NULL) {
|
||
state = Canvas(canvas)->canvas_state;
|
||
}
|
||
width = (double) arcPtr->outline.width;
|
||
if (Canvas(canvas)->currentItemPtr == itemPtr) {
|
||
if (arcPtr->outline.activeWidth>width) {
|
||
width = (double) arcPtr->outline.activeWidth;
|
||
}
|
||
} else if (state == TK_STATE_DISABLED) {
|
||
if (arcPtr->outline.disabledWidth>0) {
|
||
width = (double) arcPtr->outline.disabledWidth;
|
||
}
|
||
}
|
||
|
||
if ((arcPtr->fillGC != NULL) || (arcPtr->outline.gc == NULL)) {
|
||
filled = 1;
|
||
} else {
|
||
filled = 0;
|
||
}
|
||
if (arcPtr->outline.gc == NULL) {
|
||
width = 0.0;
|
||
}
|
||
|
||
/*
|
||
* Transform both the arc and the rectangle so that the arc's oval is
|
||
* centered on the origin.
|
||
*/
|
||
|
||
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
||
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
||
tRect[0] = rectPtr[0] - center[0];
|
||
tRect[1] = rectPtr[1] - center[1];
|
||
tRect[2] = rectPtr[2] - center[0];
|
||
tRect[3] = rectPtr[3] - center[1];
|
||
rx = arcPtr->bbox[2] - center[0] + width/2.0;
|
||
ry = arcPtr->bbox[3] - center[1] + width/2.0;
|
||
|
||
/*
|
||
* Find the extreme points of the arc and see whether these are all inside
|
||
* the rectangle (in which case we're done), partly in and partly out (in
|
||
* which case we're done), or all outside (in which case we have more work
|
||
* to do). The extreme points include the following, which are checked in
|
||
* order:
|
||
*
|
||
* 1. The outside points of the arc, corresponding to start and extent.
|
||
* 2. The center of the arc (but only in pie-slice mode).
|
||
* 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc includes
|
||
* those angles).
|
||
*/
|
||
|
||
pointPtr = points;
|
||
angle = -arcPtr->start*(PI/180.0);
|
||
pointPtr[0] = rx*cos(angle);
|
||
pointPtr[1] = ry*sin(angle);
|
||
angle += -arcPtr->extent*(PI/180.0);
|
||
pointPtr[2] = rx*cos(angle);
|
||
pointPtr[3] = ry*sin(angle);
|
||
numPoints = 2;
|
||
pointPtr += 4;
|
||
|
||
if ((arcPtr->style == PIESLICE_STYLE) && (arcPtr->extent < 180.0)) {
|
||
pointPtr[0] = 0.0;
|
||
pointPtr[1] = 0.0;
|
||
numPoints++;
|
||
pointPtr += 2;
|
||
}
|
||
|
||
tmp = -arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
pointPtr[0] = rx;
|
||
pointPtr[1] = 0.0;
|
||
numPoints++;
|
||
pointPtr += 2;
|
||
}
|
||
tmp = 90.0 - arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
pointPtr[0] = 0.0;
|
||
pointPtr[1] = -ry;
|
||
numPoints++;
|
||
pointPtr += 2;
|
||
}
|
||
tmp = 180.0 - arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
pointPtr[0] = -rx;
|
||
pointPtr[1] = 0.0;
|
||
numPoints++;
|
||
pointPtr += 2;
|
||
}
|
||
tmp = 270.0 - arcPtr->start;
|
||
if (tmp < 0) {
|
||
tmp += 360.0;
|
||
}
|
||
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
||
pointPtr[0] = 0.0;
|
||
pointPtr[1] = ry;
|
||
numPoints++;
|
||
}
|
||
|
||
/*
|
||
* Now that we've located the extreme points, loop through them all to see
|
||
* which are inside the rectangle.
|
||
*/
|
||
|
||
inside = (points[0] > tRect[0]) && (points[0] < tRect[2])
|
||
&& (points[1] > tRect[1]) && (points[1] < tRect[3]);
|
||
for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) {
|
||
newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2])
|
||
&& (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]);
|
||
if (newInside != inside) {
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (inside) {
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* So far, oval appears to be outside rectangle, but can't yet tell for
|
||
* sure. Next, test each of the four sides of the rectangle against the
|
||
* bounding region for the arc. If any intersections are found, then
|
||
* return "overlapping". First, test against the polygon(s) forming the
|
||
* sides of a chord or pie-slice.
|
||
*/
|
||
|
||
if (arcPtr->style == PIESLICE_STYLE) {
|
||
if (width >= 1.0) {
|
||
if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
||
rectPtr) != -1) {
|
||
return 0;
|
||
}
|
||
if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
||
PIE_OUTLINE2_PTS, rectPtr) != -1) {
|
||
return 0;
|
||
}
|
||
} else {
|
||
if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) ||
|
||
(TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) {
|
||
return 0;
|
||
}
|
||
}
|
||
} else if (arcPtr->style == CHORD_STYLE) {
|
||
if (width >= 1.0) {
|
||
if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
||
rectPtr) != -1) {
|
||
return 0;
|
||
}
|
||
} else {
|
||
if (TkLineToArea(arcPtr->center1, arcPtr->center2,
|
||
rectPtr) != -1) {
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Next check for overlap between each of the four sides and the outer
|
||
* perimiter of the arc. If the arc isn't filled, then also check the
|
||
* inner perimeter of the arc.
|
||
*/
|
||
|
||
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
|
||
arcPtr->extent)
|
||
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
|
||
arcPtr->start, arcPtr->extent)
|
||
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
|
||
arcPtr->start, arcPtr->extent)
|
||
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
|
||
arcPtr->start, arcPtr->extent)) {
|
||
return 0;
|
||
}
|
||
if ((width > 1.0) && !filled) {
|
||
rx -= width;
|
||
ry -= width;
|
||
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
|
||
arcPtr->extent)
|
||
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
|
||
arcPtr->start, arcPtr->extent)
|
||
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
|
||
arcPtr->start, arcPtr->extent)
|
||
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
|
||
arcPtr->start, arcPtr->extent)) {
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* The arc still appears to be totally disjoint from the rectangle, but
|
||
* it's also possible that the rectangle is totally inside the arc. Do one
|
||
* last check, which is to check one point of the rectangle to see if it's
|
||
* inside the arc. If it is, we've got overlap. If it isn't, the arc's
|
||
* really outside the rectangle.
|
||
*/
|
||
|
||
if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) {
|
||
return 0;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ScaleArc --
|
||
*
|
||
* This function is invoked to rescale an arc item.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* The arc referred to by itemPtr is rescaled so that the following
|
||
* transformation is applied to all point coordinates:
|
||
* x' = originX + scaleX*(x-originX)
|
||
* y' = originY + scaleY*(y-originY)
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static void
|
||
ScaleArc(
|
||
Tk_Canvas canvas, /* Canvas containing arc. */
|
||
Tk_Item *itemPtr, /* Arc to be scaled. */
|
||
double originX, /* Origin about which to scale rect. */
|
||
double originY,
|
||
double scaleX, /* Amount to scale in X direction. */
|
||
double scaleY) /* Amount to scale in Y direction. */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
|
||
arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX);
|
||
arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY);
|
||
arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX);
|
||
arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY);
|
||
ComputeArcBbox(canvas, arcPtr);
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* TranslateArc --
|
||
*
|
||
* This function is called to move an arc by a given amount.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* The position of the arc is offset by (xDelta, yDelta), and the
|
||
* bounding box is updated in the generic part of the item structure.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static void
|
||
TranslateArc(
|
||
Tk_Canvas canvas, /* Canvas containing item. */
|
||
Tk_Item *itemPtr, /* Item that is being moved. */
|
||
double deltaX, /* Amount by which item is to be moved. */
|
||
double deltaY)
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
|
||
arcPtr->bbox[0] += deltaX;
|
||
arcPtr->bbox[1] += deltaY;
|
||
arcPtr->bbox[2] += deltaX;
|
||
arcPtr->bbox[3] += deltaY;
|
||
ComputeArcBbox(canvas, arcPtr);
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ComputeArcOutline --
|
||
*
|
||
* This function creates a polygon describing everything in the outline
|
||
* for an arc except what's in the curved part. For a "pie slice" arc
|
||
* this is a V-shaped chunk, and for a "chord" arc this is a linear chunk
|
||
* (with cutaway corners). For "arc" arcs, this stuff isn't relevant.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* The information at arcPtr->outlinePtr gets modified, and storage for
|
||
* arcPtr->outlinePtr may be allocated or freed.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static void
|
||
ComputeArcOutline(
|
||
Tk_Canvas canvas, /* Information about overall canvas. */
|
||
ArcItem *arcPtr) /* Information about arc. */
|
||
{
|
||
double sin1, cos1, sin2, cos2, angle, width, halfWidth;
|
||
double boxWidth, boxHeight;
|
||
double vertex[2], corner1[2], corner2[2];
|
||
double *outlinePtr;
|
||
Tk_State state = arcPtr->header.state;
|
||
|
||
/*
|
||
* Make sure that the outlinePtr array is large enough to hold either a
|
||
* chord or pie-slice outline.
|
||
*/
|
||
|
||
if (arcPtr->numOutlinePoints == 0) {
|
||
arcPtr->outlinePtr = (double *)ckalloc(26 * sizeof(double));
|
||
arcPtr->numOutlinePoints = 22;
|
||
}
|
||
outlinePtr = arcPtr->outlinePtr;
|
||
|
||
if (state == TK_STATE_NULL) {
|
||
state = Canvas(canvas)->canvas_state;
|
||
}
|
||
|
||
/*
|
||
* First compute the two points that lie at the centers of the ends of the
|
||
* curved arc segment, which are marked with X's in the figure below:
|
||
*
|
||
*
|
||
* * * *
|
||
* * *
|
||
* * * * *
|
||
* * * * *
|
||
* * * * *
|
||
* X * * X
|
||
*
|
||
* The code is tricky because the arc can be ovular in shape. It computes
|
||
* the position for a unit circle, and then scales to fit the shape of the
|
||
* arc's bounding box.
|
||
*
|
||
* Also, watch out because angles go counter-clockwise like you might
|
||
* expect, but the y-coordinate system is inverted. To handle this, just
|
||
* negate the angles in all the computations.
|
||
*/
|
||
|
||
boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0];
|
||
boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1];
|
||
angle = -arcPtr->start*PI/180.0;
|
||
sin1 = sin(angle);
|
||
cos1 = cos(angle);
|
||
angle -= arcPtr->extent*PI/180.0;
|
||
sin2 = sin(angle);
|
||
cos2 = cos(angle);
|
||
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
||
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
||
arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0;
|
||
arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0;
|
||
arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0;
|
||
arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0;
|
||
|
||
/*
|
||
* Next compute the "outermost corners" of the arc, which are marked with
|
||
* X's in the figure below:
|
||
*
|
||
* * * *
|
||
* * *
|
||
* * * * *
|
||
* * * * *
|
||
* X * * X
|
||
* * *
|
||
*
|
||
* The code below is tricky because it has to handle eccentricity in the
|
||
* shape of the oval. The key in the code below is to realize that the
|
||
* slope of the line from arcPtr->center1 to corner1 is (boxWidth*sin1)
|
||
* divided by (boxHeight*cos1), and similarly for arcPtr->center2 and
|
||
* corner2. These formulas can be computed from the formula for the oval.
|
||
*/
|
||
|
||
width = arcPtr->outline.width;
|
||
if (Canvas(canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
|
||
if (arcPtr->outline.activeWidth>arcPtr->outline.width) {
|
||
width = arcPtr->outline.activeWidth;
|
||
}
|
||
} else if (state == TK_STATE_DISABLED) {
|
||
if (arcPtr->outline.disabledWidth>arcPtr->outline.width) {
|
||
width = arcPtr->outline.disabledWidth;
|
||
}
|
||
}
|
||
halfWidth = width/2.0;
|
||
|
||
if (((boxWidth*sin1) == 0.0) && ((boxHeight*cos1) == 0.0)) {
|
||
angle = 0.0;
|
||
} else {
|
||
angle = atan2(boxWidth*sin1, boxHeight*cos1);
|
||
}
|
||
corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth;
|
||
corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth;
|
||
if (((boxWidth*sin2) == 0.0) && ((boxHeight*cos2) == 0.0)) {
|
||
angle = 0.0;
|
||
} else {
|
||
angle = atan2(boxWidth*sin2, boxHeight*cos2);
|
||
}
|
||
corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth;
|
||
corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth;
|
||
|
||
/*
|
||
* For a chord outline, generate a six-sided polygon with three points for
|
||
* each end of the chord. The first and third points for each end are butt
|
||
* points generated on either side of the center point. The second point
|
||
* is the corner point.
|
||
*/
|
||
|
||
if (arcPtr->style == CHORD_STYLE) {
|
||
outlinePtr[0] = outlinePtr[12] = corner1[0];
|
||
outlinePtr[1] = outlinePtr[13] = corner1[1];
|
||
TkGetButtPoints(arcPtr->center2, arcPtr->center1,
|
||
width, 0, outlinePtr+10, outlinePtr+2);
|
||
outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2]
|
||
- arcPtr->center1[0];
|
||
outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3]
|
||
- arcPtr->center1[1];
|
||
outlinePtr[6] = corner2[0];
|
||
outlinePtr[7] = corner2[1];
|
||
outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10]
|
||
- arcPtr->center1[0];
|
||
outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11]
|
||
- arcPtr->center1[1];
|
||
} else if (arcPtr->style == PIESLICE_STYLE) {
|
||
/*
|
||
* For pie slices, generate two polygons, one for each side of the pie
|
||
* slice. The first arm has a shape like this, where the center of the
|
||
* oval is X, arcPtr->center1 is at Y, and corner1 is at Z:
|
||
*
|
||
* _____________________
|
||
* | \
|
||
* | \
|
||
* X Y Z
|
||
* | /
|
||
* |_____________________/
|
||
*/
|
||
|
||
TkGetButtPoints(arcPtr->center1, vertex, width, 0,
|
||
outlinePtr, outlinePtr+2);
|
||
outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0];
|
||
outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1];
|
||
outlinePtr[6] = corner1[0];
|
||
outlinePtr[7] = corner1[1];
|
||
outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0];
|
||
outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1];
|
||
outlinePtr[10] = outlinePtr[0];
|
||
outlinePtr[11] = outlinePtr[1];
|
||
|
||
/*
|
||
* The second arm has a shape like this:
|
||
*
|
||
* ______________________
|
||
* / \
|
||
* / \
|
||
* Z Y X /
|
||
* \ /
|
||
* \______________________/
|
||
*
|
||
* Similar to above X is the center of the oval/circle, Y is
|
||
* arcPtr->center2, and Z is corner2. The extra jog out to the left of
|
||
* X is needed in or to produce a butted joint with the first arm; the
|
||
* corner to the right of X is one of the first two points of the
|
||
* first arm, depending on extent.
|
||
*/
|
||
|
||
TkGetButtPoints(arcPtr->center2, vertex, width, 0,
|
||
outlinePtr+12, outlinePtr+16);
|
||
if ((arcPtr->extent > 180) ||
|
||
((arcPtr->extent < 0) && (arcPtr->extent > -180))) {
|
||
outlinePtr[14] = outlinePtr[0];
|
||
outlinePtr[15] = outlinePtr[1];
|
||
} else {
|
||
outlinePtr[14] = outlinePtr[2];
|
||
outlinePtr[15] = outlinePtr[3];
|
||
}
|
||
outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0];
|
||
outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1];
|
||
outlinePtr[20] = corner2[0];
|
||
outlinePtr[21] = corner2[1];
|
||
outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0];
|
||
outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1];
|
||
outlinePtr[24] = outlinePtr[12];
|
||
outlinePtr[25] = outlinePtr[13];
|
||
}
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* HorizLineToArc --
|
||
*
|
||
* Determines whether a horizontal line segment intersects a given arc.
|
||
*
|
||
* Results:
|
||
* The return value is 1 if the given line intersects the infinitely-thin
|
||
* arc section defined by rx, ry, start, and extent, and 0 otherwise.
|
||
* Only the perimeter of the arc is checked: interior areas (e.g. chord
|
||
* or pie-slice) are not checked.
|
||
*
|
||
* Side effects:
|
||
* None.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
HorizLineToArc(
|
||
double x1, double x2, /* X-coords of endpoints of line segment. X1
|
||
* must be <= x2. */
|
||
double y, /* Y-coordinate of line segment. */
|
||
double rx, double ry, /* These x- and y-radii define an oval
|
||
* centered at the origin. */
|
||
double start, double extent)/* Angles that define extent of arc, in the
|
||
* standard fashion for this module. */
|
||
{
|
||
double tmp, x;
|
||
double tx, ty; /* Coordinates of intersection point in
|
||
* transformed coordinate system. */
|
||
|
||
/*
|
||
* Compute the x-coordinate of one possible intersection point between the
|
||
* arc and the line. Use a transformed coordinate system where the oval is
|
||
* a unit circle centered at the origin. Then scale back to get actual
|
||
* x-coordinate.
|
||
*/
|
||
|
||
ty = y/ry;
|
||
tmp = 1 - ty*ty;
|
||
if (tmp < 0) {
|
||
return 0;
|
||
}
|
||
tx = sqrt(tmp);
|
||
x = tx*rx;
|
||
|
||
/*
|
||
* Test both intersection points.
|
||
*/
|
||
|
||
if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) {
|
||
return 1;
|
||
}
|
||
if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) {
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* VertLineToArc --
|
||
*
|
||
* Determines whether a vertical line segment intersects a given arc.
|
||
*
|
||
* Results:
|
||
* The return value is 1 if the given line intersects the infinitely-thin
|
||
* arc section defined by rx, ry, start, and extent, and 0 otherwise.
|
||
* Only the perimeter of the arc is checked: interior areas (e.g. chord
|
||
* or pie-slice) are not checked.
|
||
*
|
||
* Side effects:
|
||
* None.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
VertLineToArc(
|
||
double x, /* X-coordinate of line segment. */
|
||
double y1, double y2, /* Y-coords of endpoints of line segment. Y1
|
||
* must be <= y2. */
|
||
double rx, double ry, /* These x- and y-radii define an oval
|
||
* centered at the origin. */
|
||
double start, double extent)/* Angles that define extent of arc, in the
|
||
* standard fashion for this module. */
|
||
{
|
||
double tmp, y;
|
||
double tx, ty; /* Coordinates of intersection point in
|
||
* transformed coordinate system. */
|
||
|
||
/*
|
||
* Compute the y-coordinate of one possible intersection point between the
|
||
* arc and the line. Use a transformed coordinate system where the oval is
|
||
* a unit circle centered at the origin. Then scale back to get actual
|
||
* y-coordinate.
|
||
*/
|
||
|
||
tx = x/rx;
|
||
tmp = 1 - tx*tx;
|
||
if (tmp < 0) {
|
||
return 0;
|
||
}
|
||
ty = sqrt(tmp);
|
||
y = ty*ry;
|
||
|
||
/*
|
||
* Test both intersection points.
|
||
*/
|
||
|
||
if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) {
|
||
return 1;
|
||
}
|
||
if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) {
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* AngleInRange --
|
||
*
|
||
* Determine whether the angle from the origin to a given point is within
|
||
* a given range.
|
||
*
|
||
* Results:
|
||
* The return value is 1 if the angle from (0,0) to (x,y) is in the range
|
||
* given by start and extent, where angles are interpreted in the
|
||
* standard way for ovals (meaning backwards from normal interpretation).
|
||
* Otherwise the return value is 0.
|
||
*
|
||
* Side effects:
|
||
* None.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
AngleInRange(
|
||
double x, double y, /* Coordinate of point; angle measured from
|
||
* origin to here, relative to x-axis. */
|
||
double start, /* First angle, degrees, >=0, <=360. */
|
||
double extent) /* Size of arc in degrees >=-360, <=360. */
|
||
{
|
||
double diff;
|
||
|
||
if ((x == 0.0) && (y == 0.0)) {
|
||
return 1;
|
||
}
|
||
diff = -atan2(y, x);
|
||
diff = diff*(180.0/PI) - start;
|
||
while (diff > 360.0) {
|
||
diff -= 360.0;
|
||
}
|
||
while (diff < 0.0) {
|
||
diff += 360.0;
|
||
}
|
||
if (extent >= 0) {
|
||
return diff <= extent;
|
||
}
|
||
return (diff-360.0) >= extent;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* ArcToPostscript --
|
||
*
|
||
* This function is called to generate Postscript for arc items.
|
||
*
|
||
* Results:
|
||
* The return value is a standard Tcl result. If an error occurs in
|
||
* generating Postscript then an error message is left in the interp's
|
||
* result, replacing whatever used to be there. If no error occurs, then
|
||
* Postscript for the item is appended to the result.
|
||
*
|
||
* Side effects:
|
||
* None.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
ArcToPostscript(
|
||
Tcl_Interp *interp, /* Leave Postscript or error message here. */
|
||
Tk_Canvas canvas, /* Information about overall canvas. */
|
||
Tk_Item *itemPtr, /* Item for which Postscript is wanted. */
|
||
TCL_UNUSED(int)) /* 1 means this is a prepass to collect font
|
||
* information; 0 means final Postscript is
|
||
* being created. */
|
||
{
|
||
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
||
double y1, y2, ang1, ang2;
|
||
XColor *color;
|
||
Pixmap stipple;
|
||
XColor *fillColor;
|
||
Pixmap fillStipple;
|
||
Tk_State state = itemPtr->state;
|
||
Tcl_Obj *psObj;
|
||
Tcl_InterpState interpState;
|
||
|
||
y1 = Tk_CanvasPsY(canvas, arcPtr->bbox[1]);
|
||
y2 = Tk_CanvasPsY(canvas, arcPtr->bbox[3]);
|
||
ang1 = arcPtr->start;
|
||
ang2 = ang1 + arcPtr->extent;
|
||
if (ang2 < ang1) {
|
||
ang1 = ang2;
|
||
ang2 = arcPtr->start;
|
||
}
|
||
|
||
if (state == TK_STATE_NULL) {
|
||
state = Canvas(canvas)->canvas_state;
|
||
}
|
||
color = arcPtr->outline.color;
|
||
stipple = arcPtr->outline.stipple;
|
||
fillColor = arcPtr->fillColor;
|
||
fillStipple = arcPtr->fillStipple;
|
||
if (Canvas(canvas)->currentItemPtr == itemPtr) {
|
||
if (arcPtr->outline.activeColor!=NULL) {
|
||
color = arcPtr->outline.activeColor;
|
||
}
|
||
if (arcPtr->outline.activeStipple!=None) {
|
||
stipple = arcPtr->outline.activeStipple;
|
||
}
|
||
if (arcPtr->activeFillColor!=NULL) {
|
||
fillColor = arcPtr->activeFillColor;
|
||
}
|
||
if (arcPtr->activeFillStipple!=None) {
|
||
fillStipple = arcPtr->activeFillStipple;
|
||
}
|
||
} else if (state == TK_STATE_DISABLED) {
|
||
if (arcPtr->outline.disabledColor!=NULL) {
|
||
color = arcPtr->outline.disabledColor;
|
||
}
|
||
if (arcPtr->outline.disabledStipple!=None) {
|
||
stipple = arcPtr->outline.disabledStipple;
|
||
}
|
||
if (arcPtr->disabledFillColor!=NULL) {
|
||
fillColor = arcPtr->disabledFillColor;
|
||
}
|
||
if (arcPtr->disabledFillStipple!=None) {
|
||
fillStipple = arcPtr->disabledFillStipple;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Make our working space.
|
||
*/
|
||
|
||
psObj = Tcl_NewObj();
|
||
interpState = Tcl_SaveInterpState(interp, TCL_OK);
|
||
|
||
/*
|
||
* If the arc is filled, output Postscript for the interior region of the
|
||
* arc.
|
||
*/
|
||
|
||
if (arcPtr->fillGC != NULL) {
|
||
Tcl_AppendPrintfToObj(psObj,
|
||
"matrix currentmatrix\n"
|
||
"%.15g %.15g translate %.15g %.15g scale\n",
|
||
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
|
||
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
|
||
|
||
if (arcPtr->style != CHORD_STYLE) {
|
||
Tcl_AppendToObj(psObj, "0 0 moveto ", -1);
|
||
}
|
||
Tcl_AppendPrintfToObj(psObj,
|
||
"0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
|
||
ang1, ang2);
|
||
|
||
Tcl_ResetResult(interp);
|
||
if (Tk_CanvasPsColor(interp, canvas, fillColor) != TCL_OK) {
|
||
goto error;
|
||
}
|
||
Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
|
||
|
||
if (fillStipple != None) {
|
||
Tcl_AppendToObj(psObj, "clip ", -1);
|
||
|
||
Tcl_ResetResult(interp);
|
||
if (Tk_CanvasPsStipple(interp, canvas, fillStipple) != TCL_OK) {
|
||
goto error;
|
||
}
|
||
Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
|
||
|
||
if (arcPtr->outline.gc != NULL) {
|
||
Tcl_AppendToObj(psObj, "grestore gsave\n", -1);
|
||
}
|
||
} else {
|
||
Tcl_AppendToObj(psObj, "fill\n", -1);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If there's an outline for the arc, draw it.
|
||
*/
|
||
|
||
if (arcPtr->outline.gc != NULL) {
|
||
Tcl_AppendPrintfToObj(psObj,
|
||
"matrix currentmatrix\n"
|
||
"%.15g %.15g translate %.15g %.15g scale\n",
|
||
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
|
||
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
|
||
Tcl_AppendPrintfToObj(psObj,
|
||
"0 0 1 %.15g %.15g arc\nsetmatrix\n0 setlinecap\n",
|
||
ang1, ang2);
|
||
|
||
Tcl_ResetResult(interp);
|
||
if (Tk_CanvasPsOutline(canvas, itemPtr, &arcPtr->outline) != TCL_OK) {
|
||
goto error;
|
||
}
|
||
Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
|
||
|
||
if (arcPtr->style != ARC_STYLE) {
|
||
Tcl_AppendToObj(psObj, "grestore gsave\n", -1);
|
||
|
||
Tcl_ResetResult(interp);
|
||
if (arcPtr->style == CHORD_STYLE) {
|
||
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
|
||
CHORD_OUTLINE_PTS);
|
||
} else {
|
||
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
|
||
PIE_OUTLINE1_PTS);
|
||
if (Tk_CanvasPsColor(interp, canvas, color) != TCL_OK) {
|
||
goto error;
|
||
}
|
||
Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
|
||
|
||
if (stipple != None) {
|
||
Tcl_AppendToObj(psObj, "clip ", -1);
|
||
|
||
Tcl_ResetResult(interp);
|
||
if (Tk_CanvasPsStipple(interp, canvas, stipple) !=TCL_OK){
|
||
goto error;
|
||
}
|
||
Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
|
||
} else {
|
||
Tcl_AppendToObj(psObj, "fill\n", -1);
|
||
}
|
||
Tcl_AppendToObj(psObj, "grestore gsave\n", -1);
|
||
|
||
Tcl_ResetResult(interp);
|
||
Tk_CanvasPsPath(interp, canvas,
|
||
arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
||
PIE_OUTLINE2_PTS);
|
||
}
|
||
if (Tk_CanvasPsColor(interp, canvas, color) != TCL_OK) {
|
||
goto error;
|
||
}
|
||
Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
|
||
|
||
if (stipple != None) {
|
||
Tcl_AppendToObj(psObj, "clip ", -1);
|
||
|
||
Tcl_ResetResult(interp);
|
||
if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK) {
|
||
goto error;
|
||
}
|
||
Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
|
||
} else {
|
||
Tcl_AppendToObj(psObj, "fill\n", -1);
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Plug the accumulated postscript back into the result.
|
||
*/
|
||
|
||
(void) Tcl_RestoreInterpState(interp, interpState);
|
||
Tcl_AppendObjToObj(Tcl_GetObjResult(interp), psObj);
|
||
Tcl_DecrRefCount(psObj);
|
||
return TCL_OK;
|
||
|
||
error:
|
||
Tcl_DiscardInterpState(interpState);
|
||
Tcl_DecrRefCount(psObj);
|
||
return TCL_ERROR;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* StyleParseProc --
|
||
*
|
||
* This function is invoked during option processing to handle the
|
||
* "-style" option.
|
||
*
|
||
* Results:
|
||
* A standard Tcl return value.
|
||
*
|
||
* Side effects:
|
||
* The state for a given item gets replaced by the state indicated in the
|
||
* value argument.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static int
|
||
StyleParseProc(
|
||
TCL_UNUSED(void *),
|
||
Tcl_Interp *interp, /* Used for reporting errors. */
|
||
TCL_UNUSED(Tk_Window), /* Window containing canvas widget. */
|
||
const char *value, /* Value of option. */
|
||
char *widgRec, /* Pointer to record for item. */
|
||
int offset) /* Offset into item. */
|
||
{
|
||
int c;
|
||
size_t length;
|
||
Style *stylePtr = (Style *) (widgRec + offset);
|
||
|
||
if (value == NULL || *value == 0) {
|
||
*stylePtr = PIESLICE_STYLE;
|
||
return TCL_OK;
|
||
}
|
||
|
||
c = value[0];
|
||
length = strlen(value);
|
||
|
||
if ((c == 'a') && (strncmp(value, "arc", length) == 0)) {
|
||
*stylePtr = ARC_STYLE;
|
||
return TCL_OK;
|
||
}
|
||
if ((c == 'c') && (strncmp(value, "chord", length) == 0)) {
|
||
*stylePtr = CHORD_STYLE;
|
||
return TCL_OK;
|
||
}
|
||
if ((c == 'p') && (strncmp(value, "pieslice", length) == 0)) {
|
||
*stylePtr = PIESLICE_STYLE;
|
||
return TCL_OK;
|
||
}
|
||
|
||
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
|
||
"bad -style option \"%s\": must be arc, chord, or pieslice",
|
||
value));
|
||
Tcl_SetErrorCode(interp, "TK", "CANVAS", "ARC_STYLE", NULL);
|
||
*stylePtr = PIESLICE_STYLE;
|
||
return TCL_ERROR;
|
||
}
|
||
|
||
/*
|
||
*--------------------------------------------------------------
|
||
*
|
||
* StylePrintProc --
|
||
*
|
||
* This function is invoked by the Tk configuration code to produce a
|
||
* printable string for the "-style" configuration option.
|
||
*
|
||
* Results:
|
||
* The return value is a string describing the state for the item
|
||
* referred to by "widgRec". In addition, *freeProcPtr is filled in with
|
||
* the address of a function to call to free the result string when it's
|
||
* no longer needed (or NULL to indicate that the string doesn't need to
|
||
* be freed).
|
||
*
|
||
* Side effects:
|
||
* None.
|
||
*
|
||
*--------------------------------------------------------------
|
||
*/
|
||
|
||
static const char *
|
||
StylePrintProc(
|
||
TCL_UNUSED(void *), /* Ignored. */
|
||
TCL_UNUSED(Tk_Window), /* Ignored. */
|
||
char *widgRec, /* Pointer to record for item. */
|
||
int offset, /* Offset into item. */
|
||
TCL_UNUSED(Tcl_FreeProc **)) /* Pointer to variable to fill in with
|
||
* information about how to reclaim storage
|
||
* for return string. */
|
||
{
|
||
Style *stylePtr = (Style *) (widgRec + offset);
|
||
|
||
if (*stylePtr == ARC_STYLE) {
|
||
return "arc";
|
||
} else if (*stylePtr == CHORD_STYLE) {
|
||
return "chord";
|
||
} else {
|
||
return "pieslice";
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Local Variables:
|
||
* mode: c
|
||
* c-basic-offset: 4
|
||
* fill-column: 78
|
||
* End:
|
||
*/
|