Files
cpython-source-deps/hash/hash_page.c
2017-09-04 13:40:25 -05:00

2666 lines
72 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996,2008 Oracle. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994
* Margo Seltzer. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Margo Seltzer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: hash_page.c 63573 2008-05-23 21:43:21Z trent.nelson $
*/
/*
* PACKAGE: hashing
*
* DESCRIPTION:
* Page manipulation for hashing package.
*/
#include "db_config.h"
#include "db_int.h"
#include "dbinc/db_page.h"
#include "dbinc/hash.h"
#include "dbinc/lock.h"
#include "dbinc/mp.h"
static int __hamc_delpg
__P((DBC *, db_pgno_t, db_pgno_t, u_int32_t, db_ham_mode, u_int32_t *));
static int __ham_getindex_sorted
__P((DBC *, PAGE *, const DBT *, int, int *, db_indx_t *));
static int __ham_getindex_unsorted
__P((DBC *, PAGE *, const DBT *, int *, db_indx_t *));
static int __ham_sort_page_cursor __P((DBC *, PAGE *));
/*
* PUBLIC: int __ham_item __P((DBC *, db_lockmode_t, db_pgno_t *));
*/
int
__ham_item(dbc, mode, pgnop)
DBC *dbc;
db_lockmode_t mode;
db_pgno_t *pgnop;
{
DB *dbp;
HASH_CURSOR *hcp;
db_pgno_t next_pgno;
int ret;
dbp = dbc->dbp;
hcp = (HASH_CURSOR *)dbc->internal;
if (F_ISSET(hcp, H_DELETED)) {
__db_errx(dbp->env, "Attempt to return a deleted item");
return (EINVAL);
}
F_CLR(hcp, H_OK | H_NOMORE);
/* Check if we need to get a page for this cursor. */
if ((ret = __ham_get_cpage(dbc, mode)) != 0)
return (ret);
recheck:
/* Check if we are looking for space in which to insert an item. */
if (hcp->seek_size != 0 && hcp->seek_found_page == PGNO_INVALID &&
hcp->seek_size < P_FREESPACE(dbp, hcp->page)) {
hcp->seek_found_page = hcp->pgno;
hcp->seek_found_indx = NDX_INVALID;
}
/* Check for off-page duplicates. */
if (hcp->indx < NUM_ENT(hcp->page) &&
HPAGE_TYPE(dbp, hcp->page, H_DATAINDEX(hcp->indx)) == H_OFFDUP) {
memcpy(pgnop,
HOFFDUP_PGNO(H_PAIRDATA(dbp, hcp->page, hcp->indx)),
sizeof(db_pgno_t));
F_SET(hcp, H_OK);
return (0);
}
/* Check if we need to go on to the next page. */
if (F_ISSET(hcp, H_ISDUP))
/*
* ISDUP is set, and offset is at the beginning of the datum.
* We need to grab the length of the datum, then set the datum
* pointer to be the beginning of the datum.
*/
memcpy(&hcp->dup_len,
HKEYDATA_DATA(H_PAIRDATA(dbp, hcp->page, hcp->indx)) +
hcp->dup_off, sizeof(db_indx_t));
if (hcp->indx >= (db_indx_t)NUM_ENT(hcp->page)) {
/* Fetch next page. */
if (NEXT_PGNO(hcp->page) == PGNO_INVALID) {
F_SET(hcp, H_NOMORE);
return (DB_NOTFOUND);
}
next_pgno = NEXT_PGNO(hcp->page);
hcp->indx = 0;
if ((ret = __ham_next_cpage(dbc, next_pgno)) != 0)
return (ret);
goto recheck;
}
F_SET(hcp, H_OK);
return (0);
}
/*
* PUBLIC: int __ham_item_reset __P((DBC *));
*/
int
__ham_item_reset(dbc)
DBC *dbc;
{
DB *dbp;
DB_MPOOLFILE *mpf;
HASH_CURSOR *hcp;
int ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
hcp = (HASH_CURSOR *)dbc->internal;
ret = 0;
if (hcp->page != NULL)
ret = __memp_fput(mpf,
dbc->thread_info, hcp->page, dbc->priority);
if ((t_ret = __ham_item_init(dbc)) != 0 && ret == 0)
ret = t_ret;
return (ret);
}
/*
* PUBLIC: int __ham_item_init __P((DBC *));
*/
int
__ham_item_init(dbc)
DBC *dbc;
{
HASH_CURSOR *hcp;
int ret;
hcp = (HASH_CURSOR *)dbc->internal;
/*
* If this cursor still holds any locks, we must release them if
* we are not running with transactions.
*/
ret = __TLPUT(dbc, hcp->lock);
/*
* The following fields must *not* be initialized here because they
* may have meaning across inits.
* hlock, hdr, split_buf, stats
*/
hcp->bucket = BUCKET_INVALID;
hcp->lbucket = BUCKET_INVALID;
LOCK_INIT(hcp->lock);
hcp->lock_mode = DB_LOCK_NG;
hcp->dup_off = 0;
hcp->dup_len = 0;
hcp->dup_tlen = 0;
hcp->seek_size = 0;
hcp->seek_found_page = PGNO_INVALID;
hcp->seek_found_indx = NDX_INVALID;
hcp->flags = 0;
hcp->pgno = PGNO_INVALID;
hcp->indx = NDX_INVALID;
hcp->page = NULL;
return (ret);
}
/*
* Returns the last item in a bucket.
*
* PUBLIC: int __ham_item_last __P((DBC *, db_lockmode_t, db_pgno_t *));
*/
int
__ham_item_last(dbc, mode, pgnop)
DBC *dbc;
db_lockmode_t mode;
db_pgno_t *pgnop;
{
HASH_CURSOR *hcp;
int ret;
hcp = (HASH_CURSOR *)dbc->internal;
if ((ret = __ham_item_reset(dbc)) != 0)
return (ret);
hcp->bucket = hcp->hdr->max_bucket;
hcp->pgno = BUCKET_TO_PAGE(hcp, hcp->bucket);
F_SET(hcp, H_OK);
return (__ham_item_prev(dbc, mode, pgnop));
}
/*
* PUBLIC: int __ham_item_first __P((DBC *, db_lockmode_t, db_pgno_t *));
*/
int
__ham_item_first(dbc, mode, pgnop)
DBC *dbc;
db_lockmode_t mode;
db_pgno_t *pgnop;
{
HASH_CURSOR *hcp;
int ret;
hcp = (HASH_CURSOR *)dbc->internal;
if ((ret = __ham_item_reset(dbc)) != 0)
return (ret);
F_SET(hcp, H_OK);
hcp->bucket = 0;
hcp->pgno = BUCKET_TO_PAGE(hcp, hcp->bucket);
return (__ham_item_next(dbc, mode, pgnop));
}
/*
* __ham_item_prev --
* Returns a pointer to key/data pair on a page. In the case of
* bigkeys, just returns the page number and index of the bigkey
* pointer pair.
*
* PUBLIC: int __ham_item_prev __P((DBC *, db_lockmode_t, db_pgno_t *));
*/
int
__ham_item_prev(dbc, mode, pgnop)
DBC *dbc;
db_lockmode_t mode;
db_pgno_t *pgnop;
{
DB *dbp;
HASH_CURSOR *hcp;
db_pgno_t next_pgno;
int ret;
hcp = (HASH_CURSOR *)dbc->internal;
dbp = dbc->dbp;
/*
* There are 5 cases for backing up in a hash file.
* Case 1: In the middle of a page, no duplicates, just dec the index.
* Case 2: In the middle of a duplicate set, back up one.
* Case 3: At the beginning of a duplicate set, get out of set and
* back up to next key.
* Case 4: At the beginning of a page; go to previous page.
* Case 5: At the beginning of a bucket; go to prev bucket.
*/
F_CLR(hcp, H_OK | H_NOMORE | H_DELETED);
if ((ret = __ham_get_cpage(dbc, mode)) != 0)
return (ret);
/*
* First handle the duplicates. Either you'll get the key here
* or you'll exit the duplicate set and drop into the code below
* to handle backing up through keys.
*/
if (!F_ISSET(hcp, H_NEXT_NODUP) && F_ISSET(hcp, H_ISDUP)) {
if (HPAGE_TYPE(dbp, hcp->page, H_DATAINDEX(hcp->indx)) ==
H_OFFDUP) {
memcpy(pgnop,
HOFFDUP_PGNO(H_PAIRDATA(dbp, hcp->page, hcp->indx)),
sizeof(db_pgno_t));
F_SET(hcp, H_OK);
return (0);
}
/* Duplicates are on-page. */
if (hcp->dup_off != 0) {
memcpy(&hcp->dup_len, HKEYDATA_DATA(
H_PAIRDATA(dbp, hcp->page, hcp->indx))
+ hcp->dup_off - sizeof(db_indx_t),
sizeof(db_indx_t));
hcp->dup_off -=
DUP_SIZE(hcp->dup_len);
return (__ham_item(dbc, mode, pgnop));
}
}
/*
* If we get here, we are not in a duplicate set, and just need
* to back up the cursor. There are still three cases:
* midpage, beginning of page, beginning of bucket.
*/
if (F_ISSET(hcp, H_DUPONLY)) {
F_CLR(hcp, H_OK);
F_SET(hcp, H_NOMORE);
return (0);
} else
/*
* We are no longer in a dup set; flag this so the dup code
* will reinitialize should we stumble upon another one.
*/
F_CLR(hcp, H_ISDUP);
if (hcp->indx == 0) { /* Beginning of page. */
hcp->pgno = PREV_PGNO(hcp->page);
if (hcp->pgno == PGNO_INVALID) {
/* Beginning of bucket. */
F_SET(hcp, H_NOMORE);
return (DB_NOTFOUND);
} else if ((ret =
__ham_next_cpage(dbc, hcp->pgno)) != 0)
return (ret);
else
hcp->indx = NUM_ENT(hcp->page);
}
/*
* Either we've got the cursor set up to be decremented, or we
* have to find the end of a bucket.
*/
if (hcp->indx == NDX_INVALID) {
DB_ASSERT(dbp->env, hcp->page != NULL);
hcp->indx = NUM_ENT(hcp->page);
for (next_pgno = NEXT_PGNO(hcp->page);
next_pgno != PGNO_INVALID;
next_pgno = NEXT_PGNO(hcp->page)) {
if ((ret = __ham_next_cpage(dbc, next_pgno)) != 0)
return (ret);
hcp->indx = NUM_ENT(hcp->page);
}
if (hcp->indx == 0) {
/* Bucket was empty. */
F_SET(hcp, H_NOMORE);
return (DB_NOTFOUND);
}
}
hcp->indx -= 2;
return (__ham_item(dbc, mode, pgnop));
}
/*
* Sets the cursor to the next key/data pair on a page.
*
* PUBLIC: int __ham_item_next __P((DBC *, db_lockmode_t, db_pgno_t *));
*/
int
__ham_item_next(dbc, mode, pgnop)
DBC *dbc;
db_lockmode_t mode;
db_pgno_t *pgnop;
{
HASH_CURSOR *hcp;
int ret;
hcp = (HASH_CURSOR *)dbc->internal;
if ((ret = __ham_get_cpage(dbc, mode)) != 0)
return (ret);
/*
* Deleted on-page duplicates are a weird case. If we delete the last
* one, then our cursor is at the very end of a duplicate set and
* we actually need to go on to the next key.
*/
if (F_ISSET(hcp, H_DELETED)) {
if (hcp->indx != NDX_INVALID &&
F_ISSET(hcp, H_ISDUP) &&
HPAGE_TYPE(dbc->dbp, hcp->page, H_DATAINDEX(hcp->indx))
== H_DUPLICATE && hcp->dup_tlen == hcp->dup_off) {
if (F_ISSET(hcp, H_DUPONLY)) {
F_CLR(hcp, H_OK);
F_SET(hcp, H_NOMORE);
return (0);
} else {
F_CLR(hcp, H_ISDUP);
hcp->indx += 2;
}
} else if (!F_ISSET(hcp, H_ISDUP) && F_ISSET(hcp, H_DUPONLY)) {
F_CLR(hcp, H_OK);
F_SET(hcp, H_NOMORE);
return (0);
} else if (F_ISSET(hcp, H_ISDUP) &&
F_ISSET(hcp, H_NEXT_NODUP)) {
F_CLR(hcp, H_ISDUP);
hcp->indx += 2;
}
F_CLR(hcp, H_DELETED);
} else if (hcp->indx == NDX_INVALID) {
hcp->indx = 0;
F_CLR(hcp, H_ISDUP);
} else if (F_ISSET(hcp, H_NEXT_NODUP)) {
hcp->indx += 2;
F_CLR(hcp, H_ISDUP);
} else if (F_ISSET(hcp, H_ISDUP) && hcp->dup_tlen != 0) {
if (hcp->dup_off + DUP_SIZE(hcp->dup_len) >=
hcp->dup_tlen && F_ISSET(hcp, H_DUPONLY)) {
F_CLR(hcp, H_OK);
F_SET(hcp, H_NOMORE);
return (0);
}
hcp->dup_off += DUP_SIZE(hcp->dup_len);
if (hcp->dup_off >= hcp->dup_tlen) {
F_CLR(hcp, H_ISDUP);
hcp->indx += 2;
}
} else if (F_ISSET(hcp, H_DUPONLY)) {
F_CLR(hcp, H_OK);
F_SET(hcp, H_NOMORE);
return (0);
} else {
hcp->indx += 2;
F_CLR(hcp, H_ISDUP);
}
return (__ham_item(dbc, mode, pgnop));
}
/*
* __ham_insertpair --
*
* Used for adding a pair of elements to a sorted page. We are guaranteed that
* the pair will fit on this page.
*
* If an index is provided, then use it, otherwise lookup the index using
* __ham_getindex. This saves a getindex call when inserting using a cursor.
*
* We're overloading the meaning of the H_OFFPAGE type here, which is a little
* bit sleazy. When we recover deletes, we have the entire entry instead of
* having only the DBT, so we'll pass type H_OFFPAGE to mean "copy the whole
* entry" as opposed to constructing an H_KEYDATA around it. In the recovery
* case it is assumed that a valid index is passed in, since a lookup using
* the overloaded H_OFFPAGE key will be incorrect.
*
* PUBLIC: int __ham_insertpair __P((DBC *,
* PUBLIC: PAGE *p, db_indx_t *indxp, const DBT *, const DBT *, int, int));
*/
int
__ham_insertpair(dbc, p, indxp, key_dbt, data_dbt, key_type, data_type)
DBC *dbc;
PAGE *p;
db_indx_t *indxp;
const DBT *key_dbt, *data_dbt;
int key_type, data_type;
{
DB *dbp;
u_int16_t n, indx;
db_indx_t *inp;
u_int32_t ksize, dsize, increase, distance;
u_int8_t *offset;
int i, match, ret;
dbp = dbc->dbp;
n = NUM_ENT(p);
inp = P_INP(dbp, p);
ksize = (key_type == H_OFFPAGE) ?
key_dbt->size : HKEYDATA_SIZE(key_dbt->size);
dsize = (data_type == H_OFFPAGE) ?
data_dbt->size : HKEYDATA_SIZE(data_dbt->size);
increase = ksize + dsize;
if (indxp != NULL && *indxp != NDX_INVALID)
indx = *indxp;
else {
if ((ret = __ham_getindex(dbc, p, key_dbt,
key_type, &match, &indx)) != 0)
return (ret);
/* Save the index for the caller */
if (indxp != NULL)
*indxp = indx;
/* It is an error to insert a duplicate key */
DB_ASSERT(dbp->env, match != 0);
}
/* Special case if the page is empty or inserting at end of page.*/
if (n == 0 || indx == n) {
inp[indx] = HOFFSET(p) - ksize;
inp[indx+1] = HOFFSET(p) - increase;
} else {
/*
* Shuffle the data elements.
*
* For example, inserting an element that sorts between items
* 2 and 3 on a page:
* The copy starts from the beginning of the second item.
*
* ---------------------------
* |pgheader..
* |__________________________
* ||1|2|3|4|...
* |--------------------------
* |
* |__________________________
* | ...|4|3|2|1|
* |--------------------------
* ---------------------------
*
* Becomes:
*
* ---------------------------
* |pgheader..
* |__________________________
* ||1|2|2a|3|4|...
* |--------------------------
* |
* |__________________________
* | ...|4|3|2a|2|1|
* |--------------------------
* ---------------------------
*
* Index's 3,4 etc move down the page.
* The data for 3,4,etc moves up the page by sizeof(2a)
* The index pointers in 3,4 etc are updated to point at the
* relocated data.
* It is necessary to move the data (not just adjust the index)
* since the hash format uses consecutive data items to
* dynamically calculate the item size.
* An item in this example is a key/data pair.
*/
offset = (u_int8_t *)p + HOFFSET(p);
if (indx == 0)
distance = dbp->pgsize - HOFFSET(p);
else
distance = (u_int32_t)
(P_ENTRY(dbp, p, indx - 1) - offset);
memmove(offset - increase, offset, distance);
/* Shuffle the index array */
memmove(&inp[indx + 2], &inp[indx],
(n - indx) * sizeof(db_indx_t));
/* update the index array */
for (i = indx + 2; i < n + 2; i++)
inp[i] -= increase;
/* set the new index elements. */
inp[indx] = (HOFFSET(p) - increase) + distance + dsize;
inp[indx + 1] = (HOFFSET(p) - increase) + distance;
}
HOFFSET(p) -= increase;
/* insert the new elements */
if (key_type == H_OFFPAGE)
memcpy(P_ENTRY(dbp, p, indx), key_dbt->data, key_dbt->size);
else
PUT_HKEYDATA(P_ENTRY(dbp, p, indx), key_dbt->data,
key_dbt->size, key_type);
if (data_type == H_OFFPAGE)
memcpy(P_ENTRY(dbp, p, indx+1), data_dbt->data,
data_dbt->size);
else
PUT_HKEYDATA(P_ENTRY(dbp, p, indx+1), data_dbt->data,
data_dbt->size, data_type);
NUM_ENT(p) += 2;
/*
* If debugging a sorted hash page problem, this is a good place to
* insert a call to __ham_verify_sorted_page.
* It used to be called when diagnostic mode was enabled, but that
* causes problems in recovery if a custom comparator was used.
*/
return (0);
}
/*
* __hame_getindex --
*
* The key_type parameter overloads the entry type to allow for comparison of
* a key DBT that contains off-page data. A key that is not of type H_OFFPAGE
* might contain data larger than the page size, since this routine can be
* called with user-provided DBTs.
*
* PUBLIC: int __ham_getindex __P((DBC *,
* PUBLIC: PAGE *, const DBT *, int, int *, db_indx_t *));
*/
int
__ham_getindex(dbc, p, key, key_type, match, indx)
DBC *dbc;
PAGE *p;
const DBT *key;
int key_type, *match;
db_indx_t *indx;
{
/* Since all entries are key/data pairs. */
DB_ASSERT(dbc->env, NUM_ENT(p)%2 == 0 );
/* Support pre 4.6 unsorted hash pages. */
if (p->type == P_HASH_UNSORTED)
return (__ham_getindex_unsorted(dbc, p, key, match, indx));
else
return (__ham_getindex_sorted(dbc,
p, key, key_type, match, indx));
}
#undef min
#define min(a, b) (((a) < (b)) ? (a) : (b))
/*
* Perform a linear search of an unsorted (pre 4.6 format) hash page.
*
* This routine is never used to generate an index for insertion, because any
* unsorted page is sorted before we insert.
*
* Returns 0 if an exact match is found, with indx set to requested elem.
* Returns 1 if the item did not exist, indx is set to the last element on the
* page.
*/
static int
__ham_getindex_unsorted(dbc, p, key, match, indx)
DBC *dbc;
PAGE *p;
const DBT *key;
int *match;
db_indx_t *indx;
{
DB *dbp;
DBT pg_dbt;
DB_THREAD_INFO *ip;
DB_TXN *txn;
HASH *t;
db_pgno_t pgno;
int i, n, res, ret;
u_int32_t tlen;
u_int8_t *hk;
dbp = dbc->dbp;
txn = dbc->txn;
ip = dbc->thread_info;
n = NUM_ENT(p);
t = dbp->h_internal;
res = 1;
/* Do a linear search over the page looking for an exact match */
for (i = 0; i < n; i+=2) {
hk = H_PAIRKEY(dbp, p, i);
switch (HPAGE_PTYPE(hk)) {
case H_OFFPAGE:
/* extract item length from possibly unaligned DBT */
memcpy(&tlen, HOFFPAGE_TLEN(hk), sizeof(u_int32_t));
if (tlen == key->size) {
memcpy(&pgno,
HOFFPAGE_PGNO(hk), sizeof(db_pgno_t));
if ((ret = __db_moff(dbp, ip, txn, key,
pgno, tlen, t->h_compare, &res)) != 0)
return (ret);
}
break;
case H_KEYDATA:
if (t->h_compare != NULL) {
DB_INIT_DBT(pg_dbt,
HKEYDATA_DATA(hk), key->size);
if (t->h_compare(
dbp, key, &pg_dbt) != 0)
break;
} else if (key->size ==
LEN_HKEY(dbp, p, dbp->pgsize, i))
res = memcmp(key->data, HKEYDATA_DATA(hk),
key->size);
break;
case H_DUPLICATE:
case H_OFFDUP:
/*
* These are errors because keys are never duplicated.
*/
/* FALLTHROUGH */
default:
return (__db_pgfmt(dbp->env, PGNO(p)));
}
if (res == 0)
break;
}
*indx = i;
*match = (res == 0 ? 0 : 1);
return (0);
}
/*
* Perform a binary search of a sorted hash page for a key.
* Return 0 if an exact match is found, with indx set to requested elem.
* Return 1 if the item did not exist, indx will be set to the first element
* greater than the requested item.
*/
static int
__ham_getindex_sorted(dbc, p, key, key_type, match, indxp)
DBC *dbc;
PAGE *p;
const DBT *key;
int key_type, *match;
db_indx_t *indxp;
{
DB *dbp;
DBT tmp_dbt;
DB_THREAD_INFO *ip;
DB_TXN *txn;
HASH *t;
HOFFPAGE *offp;
db_indx_t indx;
db_pgno_t off_pgno, koff_pgno;
u_int32_t base, itemlen, lim, off_len;
u_int8_t *entry;
int res, ret;
void *data;
dbp = dbc->dbp;
txn = dbc->txn;
ip = dbc->thread_info;
DB_ASSERT(dbp->env, p->type == P_HASH );
t = dbp->h_internal;
/* Initialize so the return params are correct for empty pages. */
res = indx = 0;
/* Do a binary search for the element. */
DB_BINARY_SEARCH_FOR(base, lim, p, 2) {
DB_BINARY_SEARCH_INCR(indx, base, lim, 2);
data = HKEYDATA_DATA(H_PAIRKEY(dbp, p, indx));
/*
* There are 4 cases here:
* 1) Off page key, off page match
* 2) Off page key, on page match
* 3) On page key, off page match
* 4) On page key, on page match
*/
entry = P_ENTRY(dbp, p, indx);
if (*entry == H_OFFPAGE) {
offp = (HOFFPAGE*)P_ENTRY(dbp, p, indx);
(void)__ua_memcpy(&itemlen, HOFFPAGE_TLEN(offp),
sizeof(u_int32_t));
if (key_type == H_OFFPAGE) {
/*
* Case 1.
*
* If both key and cmp DBTs refer to different
* offpage items, it is necessary to compare
* the content of the entries, in order to be
* able to maintain a valid lexicographic sort
* order.
*/
(void)__ua_memcpy(&koff_pgno,
HOFFPAGE_PGNO(key->data),
sizeof(db_pgno_t));
(void)__ua_memcpy(&off_pgno, HOFFPAGE_PGNO(offp),
sizeof(db_pgno_t));
if (koff_pgno == off_pgno)
res = 0;
else {
memset(&tmp_dbt, 0, sizeof(tmp_dbt));
tmp_dbt.size = HOFFPAGE_SIZE;
tmp_dbt.data = offp;
if ((ret = __db_coff(dbp, ip, txn, key,
&tmp_dbt, t->h_compare, &res))
!= 0)
return (ret);
}
} else {
/* Case 2 */
(void)__ua_memcpy(&off_pgno,
HOFFPAGE_PGNO(offp), sizeof(db_pgno_t));
if ((ret = __db_moff(dbp, ip, txn, key,
off_pgno, itemlen, t->h_compare, &res))
!= 0)
return (ret);
}
} else {
itemlen = LEN_HKEYDATA(dbp, p, dbp->pgsize, indx);
if (key_type == H_OFFPAGE) {
/* Case 3 */
tmp_dbt.data = data;
tmp_dbt.size = itemlen;
offp = (HOFFPAGE *)key->data;
(void)__ua_memcpy(&off_pgno,
HOFFPAGE_PGNO(offp), sizeof(db_pgno_t));
(void)__ua_memcpy(&off_len, HOFFPAGE_TLEN(offp),
sizeof(u_int32_t));
if ((ret = __db_moff(dbp, ip, txn, &tmp_dbt,
off_pgno, off_len, t->h_compare,
&res)) != 0)
return (ret);
/*
* Since we switched the key/match parameters
* in the __db_moff call, the result needs to
* be inverted.
*/
res = -res;
} else if (t->h_compare != NULL) {
/* Case 4, with a user comparison func */
DB_INIT_DBT(tmp_dbt, data, itemlen);
res = t->h_compare(dbp, key, &tmp_dbt);
} else {
/* Case 4, without a user comparison func */
if ((res = memcmp(key->data, data,
min(key->size, itemlen))) == 0)
res = itemlen > key->size ? 1 :
(itemlen < key->size ? -1 : 0);
}
}
if (res == 0) {
/* Found a match */
*indxp = indx;
*match = 0;
return (0);
} else if (res > 0)
DB_BINARY_SEARCH_SHIFT_BASE(indx, base, lim, 2);
}
/*
* If no match was found, and the comparison indicates that the
* closest match was lexicographically less than the input key adjust
* the insertion index to be after the index of the closest match.
*/
if (res > 0)
indx += 2;
*indxp = indx;
*match = 1;
return (0);
}
/*
* PUBLIC: int __ham_verify_sorted_page __P((DB *,
* PUBLIC: DB_THREAD_INFO *, DB_TXN *, PAGE *));
*
* The__ham_verify_sorted_page function is used to determine the correctness
* of sorted hash pages. The checks are used by verification, they are
* implemented in the hash code because they are also useful debugging aids.
*/
int
__ham_verify_sorted_page (dbp, ip, txn, p)
DB *dbp;
DB_THREAD_INFO *ip;
DB_TXN *txn;
PAGE *p;
{
DBT prev_dbt, curr_dbt;
ENV *env;
HASH *t;
db_pgno_t tpgno;
u_int32_t curr_len, prev_len, tlen;
u_int16_t *indxp;
db_indx_t i, n;
int res, ret;
char *prev, *curr;
/* Validate that next, prev pointers are OK */
n = NUM_ENT(p);
DB_ASSERT(dbp->env, n%2 == 0 );
env = dbp->env;
t = dbp->h_internal;
/* Disable verification if a custom comparator is supplied */
if (t->h_compare != NULL)
return (0);
/* Iterate through page, ensuring order */
prev = (char *)HKEYDATA_DATA(H_PAIRKEY(dbp, p, 0));
prev_len = LEN_HKEYDATA(dbp, p, dbp->pgsize, 0);
for (i = 2; i < n; i+=2) {
curr = (char *)HKEYDATA_DATA(H_PAIRKEY(dbp, p, i));
curr_len = LEN_HKEYDATA(dbp, p, dbp->pgsize, i);
if (HPAGE_TYPE(dbp, p, i-2) == H_OFFPAGE &&
HPAGE_TYPE(dbp, p, i) == H_OFFPAGE) {
memset(&prev_dbt, 0, sizeof(prev_dbt));
memset(&curr_dbt, 0, sizeof(curr_dbt));
prev_dbt.size = curr_dbt.size = HOFFPAGE_SIZE;
prev_dbt.data = H_PAIRKEY(dbp, p, i-2);
curr_dbt.data = H_PAIRKEY(dbp, p, i);
if ((ret = __db_coff(dbp, ip, txn,
&prev_dbt, &curr_dbt, t->h_compare, &res)) != 0)
return (ret);
} else if (HPAGE_TYPE(dbp, p, i-2) == H_OFFPAGE) {
memset(&curr_dbt, 0, sizeof(curr_dbt));
curr_dbt.size = curr_len;
curr_dbt.data = H_PAIRKEY(dbp, p, i);
memcpy(&tlen, HOFFPAGE_TLEN(H_PAIRKEY(dbp, p, i-2)),
sizeof(u_int32_t));
memcpy(&tpgno, HOFFPAGE_PGNO(H_PAIRKEY(dbp, p, i-2)),
sizeof(db_pgno_t));
if ((ret = __db_moff(dbp, ip, txn,
&curr_dbt, tpgno, tlen, t->h_compare, &res)) != 0)
return (ret);
} else if (HPAGE_TYPE(dbp, p, i) == H_OFFPAGE) {
memset(&prev_dbt, 0, sizeof(prev_dbt));
prev_dbt.size = prev_len;
prev_dbt.data = H_PAIRKEY(dbp, p, i);
memcpy(&tlen, HOFFPAGE_TLEN(H_PAIRKEY(dbp, p, i)),
sizeof(u_int32_t));
memcpy(&tpgno, HOFFPAGE_PGNO(H_PAIRKEY(dbp, p, i)),
sizeof(db_pgno_t));
if ((ret = __db_moff(dbp, ip, txn,
&prev_dbt, tpgno, tlen, t->h_compare, &res)) != 0)
return (ret);
} else
res = memcmp(prev, curr, min(curr_len, prev_len));
if (res == 0 && curr_len > prev_len)
res = 1;
else if (res == 0 && curr_len < prev_len)
res = -1;
if (res >= 0) {
__db_msg(env, "key1: %s, key2: %s, len: %lu\n",
(char *)prev, (char *)curr,
(u_long)min(curr_len, prev_len));
__db_msg(env, "curroffset %lu\n", (u_long)i);
__db_msg(env, "indexes: ");
for (i = 0; i < n; i++) {
indxp = P_INP(dbp, p) + i;
__db_msg(env, "%04X, ", *indxp);
}
__db_msg(env, "\n");
#ifdef HAVE_STATISTICS
if ((ret = __db_prpage(dbp, p, DB_PR_PAGE)) != 0)
return (ret);
#endif
DB_ASSERT(dbp->env, res < 0);
}
prev = curr;
prev_len = curr_len;
}
return (0);
}
/*
* A wrapper for the __ham_sort_page function. Implements logging and cursor
* adjustments associated with sorting a page outside of recovery/upgrade.
*/
static int
__ham_sort_page_cursor(dbc, page)
DBC *dbc;
PAGE *page;
{
DB *dbp;
DBT page_dbt;
DB_LSN new_lsn;
HASH_CURSOR *hcp;
int ret;
dbp = dbc->dbp;
hcp = (HASH_CURSOR *)dbc->internal;
if (DBC_LOGGING(dbc)) {
page_dbt.size = dbp->pgsize;
page_dbt.data = page;
if ((ret = __ham_splitdata_log(dbp, dbc->txn,
&new_lsn, 0, SORTPAGE, PGNO(page),
&page_dbt, &LSN(page))) != 0)
return (ret);
} else
LSN_NOT_LOGGED(new_lsn);
/* Move lsn onto page. */
LSN(page) = new_lsn; /* Structure assignment. */
/*
* Invalidate the saved index, it needs to be retrieved
* again once the page is sorted.
*/
hcp->seek_found_indx = NDX_INVALID;
hcp->seek_found_page = PGNO_INVALID;
return (__ham_sort_page(dbc, &hcp->split_buf, page));
}
/*
* PUBLIC: int __ham_sort_page __P((DBC *, PAGE **, PAGE *));
*
* Convert a page from P_HASH_UNSORTED into the sorted format P_HASH.
*
* All locking and logging is carried out be the caller. A user buffer can
* optionally be passed in to save allocating a page size buffer for sorting.
* This is allows callers to re-use the buffer pre-allocated for page splits
* in the hash cursor. The buffer is optional since no cursor exists when in
* the recovery or upgrade code paths.
*/
int
__ham_sort_page(dbc, tmp_buf, page)
DBC *dbc;
PAGE **tmp_buf;
PAGE *page;
{
DB *dbp;
PAGE *temp_pagep;
db_indx_t i;
int ret;
dbp = dbc->dbp;
DB_ASSERT(dbp->env, page->type == P_HASH_UNSORTED);
ret = 0;
if (tmp_buf != NULL)
temp_pagep = *tmp_buf;
else if ((ret = __os_malloc(dbp->env, dbp->pgsize, &temp_pagep)) != 0)
return (ret);
memcpy(temp_pagep, page, dbp->pgsize);
/* Re-initialize the page. */
P_INIT(page, dbp->pgsize,
page->pgno, page->prev_pgno, page->next_pgno, 0, P_HASH);
for (i = 0; i < NUM_ENT(temp_pagep); i += 2)
if ((ret =
__ham_copypair(dbc, temp_pagep, i, page, NULL)) != 0)
break;
if (tmp_buf == NULL)
__os_free(dbp->env, temp_pagep);
return (ret);
}
/*
* PUBLIC: int __ham_del_pair __P((DBC *, int));
*/
int
__ham_del_pair(dbc, flags)
DBC *dbc;
int flags;
{
DB *dbp;
DBT data_dbt, key_dbt;
DB_LSN new_lsn, *n_lsn, tmp_lsn;
DB_MPOOLFILE *mpf;
HASH_CURSOR *hcp;
PAGE *n_pagep, *nn_pagep, *p, *p_pagep;
db_ham_mode op;
db_indx_t ndx;
db_pgno_t chg_pgno, pgno, tmp_pgno;
u_int32_t order;
int ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
hcp = (HASH_CURSOR *)dbc->internal;
n_pagep = p_pagep = nn_pagep = NULL;
ndx = hcp->indx;
if (hcp->page == NULL &&
(ret = __memp_fget(mpf, &hcp->pgno, dbc->thread_info, dbc->txn,
DB_MPOOL_CREATE | DB_MPOOL_DIRTY, &hcp->page)) != 0)
return (ret);
p = hcp->page;
/*
* We optimize for the normal case which is when neither the key nor
* the data are large. In this case, we write a single log record
* and do the delete. If either is large, we'll call __big_delete
* to remove the big item and then update the page to remove the
* entry referring to the big item.
*/
if (HPAGE_PTYPE(H_PAIRKEY(dbp, p, ndx)) == H_OFFPAGE) {
memcpy(&pgno, HOFFPAGE_PGNO(P_ENTRY(dbp, p, H_KEYINDEX(ndx))),
sizeof(db_pgno_t));
ret = __db_doff(dbc, pgno);
} else
ret = 0;
if (ret == 0)
switch (HPAGE_PTYPE(H_PAIRDATA(dbp, p, ndx))) {
case H_OFFPAGE:
memcpy(&pgno,
HOFFPAGE_PGNO(P_ENTRY(dbp, p, H_DATAINDEX(ndx))),
sizeof(db_pgno_t));
ret = __db_doff(dbc, pgno);
break;
case H_OFFDUP:
case H_DUPLICATE:
/*
* If we delete a pair that is/was a duplicate, then
* we had better clear the flag so that we update the
* cursor appropriately.
*/
F_CLR(hcp, H_ISDUP);
break;
default:
/* No-op */
break;
}
if (ret)
return (ret);
/* Now log the delete off this page. */
if (DBC_LOGGING(dbc)) {
key_dbt.data = P_ENTRY(dbp, p, H_KEYINDEX(ndx));
key_dbt.size = LEN_HITEM(dbp, p, dbp->pgsize, H_KEYINDEX(ndx));
data_dbt.data = P_ENTRY(dbp, p, H_DATAINDEX(ndx));
data_dbt.size =
LEN_HITEM(dbp, p, dbp->pgsize, H_DATAINDEX(ndx));
if ((ret = __ham_insdel_log(dbp,
dbc->txn, &new_lsn, 0, DELPAIR, PGNO(p), (u_int32_t)ndx,
&LSN(p), &key_dbt, &data_dbt)) != 0)
return (ret);
} else
LSN_NOT_LOGGED(new_lsn);
/* Move lsn onto page. */
LSN(p) = new_lsn;
/* Do the delete. */
__ham_dpair(dbp, p, ndx);
/*
* Mark item deleted so that we don't try to return it, and
* so that we update the cursor correctly on the next call
* to next.
*/
F_SET(hcp, H_DELETED);
F_CLR(hcp, H_OK);
/*
* If we are locking, we will not maintain this, because it is
* a hot spot.
*
* XXX
* Perhaps we can retain incremental numbers and apply them later.
*/
if (!STD_LOCKING(dbc)) {
if ((ret = __ham_dirty_meta(dbc, 0)) != 0)
return (ret);
--hcp->hdr->nelem;
}
/* The HAM_DEL_NO_CURSOR flag implies HAM_DEL_NO_RECLAIM. */
if (LF_ISSET(HAM_DEL_NO_CURSOR))
return (0);
/*
* Update cursors that are on the page where the delete happened.
*/
if ((ret = __hamc_update(dbc, 0, DB_HAM_CURADJ_DEL, 0)) != 0)
return (ret);
/*
* If we need to reclaim the page, then check if the page is empty.
* There are two cases. If it's empty and it's not the first page
* in the bucket (i.e., the bucket page) then we can simply remove
* it. If it is the first chain in the bucket, then we need to copy
* the second page into it and remove the second page.
* If its the only page in the bucket we leave it alone.
*/
if (LF_ISSET(HAM_DEL_NO_RECLAIM) ||
NUM_ENT(p) != 0 ||
(PREV_PGNO(p) == PGNO_INVALID && NEXT_PGNO(p) == PGNO_INVALID))
return (0);
if (PREV_PGNO(p) == PGNO_INVALID) {
/*
* First page in chain is empty and we know that there
* are more pages in the chain.
*/
if ((ret = __memp_fget(mpf,
&NEXT_PGNO(p), dbc->thread_info, dbc->txn,
DB_MPOOL_DIRTY, &n_pagep)) != 0)
return (ret);
if (NEXT_PGNO(n_pagep) != PGNO_INVALID &&
(ret = __memp_fget(mpf, &NEXT_PGNO(n_pagep),
dbc->thread_info, dbc->txn,
DB_MPOOL_DIRTY, &nn_pagep)) != 0)
goto err;
if (DBC_LOGGING(dbc)) {
key_dbt.data = n_pagep;
key_dbt.size = dbp->pgsize;
if ((ret = __ham_copypage_log(dbp,
dbc->txn, &new_lsn, 0, PGNO(p),
&LSN(p), PGNO(n_pagep), &LSN(n_pagep),
NEXT_PGNO(n_pagep),
nn_pagep == NULL ? NULL : &LSN(nn_pagep),
&key_dbt)) != 0)
goto err;
} else
LSN_NOT_LOGGED(new_lsn);
/* Move lsn onto page. */
LSN(p) = new_lsn; /* Structure assignment. */
LSN(n_pagep) = new_lsn;
if (NEXT_PGNO(n_pagep) != PGNO_INVALID)
LSN(nn_pagep) = new_lsn;
if (nn_pagep != NULL) {
PREV_PGNO(nn_pagep) = PGNO(p);
if ((ret = __memp_fput(mpf,
dbc->thread_info, nn_pagep, dbc->priority)) != 0) {
nn_pagep = NULL;
goto err;
}
}
tmp_pgno = PGNO(p);
tmp_lsn = LSN(p);
memcpy(p, n_pagep, dbp->pgsize);
PGNO(p) = tmp_pgno;
LSN(p) = tmp_lsn;
PREV_PGNO(p) = PGNO_INVALID;
/*
* Update cursors to reflect the fact that records
* on the second page have moved to the first page.
*/
if ((ret = __hamc_delpg(dbc, PGNO(n_pagep),
PGNO(p), 0, DB_HAM_DELFIRSTPG, &order)) != 0)
goto err;
/*
* Update the cursor to reflect its new position.
*/
hcp->indx = 0;
hcp->pgno = PGNO(p);
hcp->order += order;
if ((ret = __db_free(dbc, n_pagep)) != 0) {
n_pagep = NULL;
goto err;
}
} else {
if ((ret = __memp_fget(mpf,
&PREV_PGNO(p), dbc->thread_info, dbc->txn,
DB_MPOOL_DIRTY, &p_pagep)) != 0)
goto err;
if (NEXT_PGNO(p) != PGNO_INVALID) {
if ((ret = __memp_fget(mpf, &NEXT_PGNO(p),
dbc->thread_info, dbc->txn,
DB_MPOOL_DIRTY, &n_pagep)) != 0)
goto err;
n_lsn = &LSN(n_pagep);
} else {
n_pagep = NULL;
n_lsn = NULL;
}
NEXT_PGNO(p_pagep) = NEXT_PGNO(p);
if (n_pagep != NULL)
PREV_PGNO(n_pagep) = PGNO(p_pagep);
if (DBC_LOGGING(dbc)) {
if ((ret = __ham_newpage_log(dbp, dbc->txn,
&new_lsn, 0, DELOVFL, PREV_PGNO(p), &LSN(p_pagep),
PGNO(p), &LSN(p), NEXT_PGNO(p), n_lsn)) != 0)
goto err;
} else
LSN_NOT_LOGGED(new_lsn);
/* Move lsn onto page. */
LSN(p_pagep) = new_lsn; /* Structure assignment. */
if (n_pagep)
LSN(n_pagep) = new_lsn;
LSN(p) = new_lsn;
if (NEXT_PGNO(p) == PGNO_INVALID) {
/*
* There is no next page; put the cursor on the
* previous page as if we'd deleted the last item
* on that page, with index after the last valid
* entry.
*
* The deleted flag was set up above.
*/
hcp->pgno = PGNO(p_pagep);
hcp->indx = NUM_ENT(p_pagep);
op = DB_HAM_DELLASTPG;
} else {
/*
* There is a next page, so put the cursor at
* the beginning of it.
*/
hcp->pgno = NEXT_PGNO(p);
hcp->indx = 0;
op = DB_HAM_DELMIDPG;
}
/*
* Since we are about to delete the cursor page and we have
* just moved the cursor, we need to make sure that the
* old page pointer isn't left hanging around in the cursor.
*/
hcp->page = NULL;
chg_pgno = PGNO(p);
ret = __db_free(dbc, p);
if ((t_ret = __memp_fput(mpf, dbc->thread_info,
p_pagep, dbc->priority)) != 0 && ret == 0)
ret = t_ret;
if (n_pagep != NULL && (t_ret = __memp_fput(mpf,
dbc->thread_info, n_pagep, dbc->priority)) != 0 && ret == 0)
ret = t_ret;
if (ret != 0)
return (ret);
if ((ret = __hamc_delpg(dbc,
chg_pgno, hcp->pgno, hcp->indx, op, &order)) != 0)
return (ret);
hcp->order += order;
}
return (ret);
err: /* Clean up any pages. */
if (n_pagep != NULL)
(void)__memp_fput(mpf,
dbc->thread_info, n_pagep, dbc->priority);
if (nn_pagep != NULL)
(void)__memp_fput(mpf,
dbc->thread_info, nn_pagep, dbc->priority);
if (p_pagep != NULL)
(void)__memp_fput(mpf,
dbc->thread_info, p_pagep, dbc->priority);
return (ret);
}
/*
* __ham_replpair --
* Given the key data indicated by the cursor, replace part/all of it
* according to the fields in the dbt.
*
* PUBLIC: int __ham_replpair __P((DBC *, DBT *, u_int32_t));
*/
int
__ham_replpair(dbc, dbt, make_dup)
DBC *dbc;
DBT *dbt;
u_int32_t make_dup;
{
DB *dbp;
DBC **carray, *dbc_n;
DBT old_dbt, tdata, tmp, *new_dbt;
DB_LSN new_lsn;
ENV *env;
HASH_CURSOR *hcp, *cp;
db_indx_t orig_indx;
db_pgno_t orig_pgno;
u_int32_t change;
u_int32_t dup_flag, len, memsize, newlen;
int beyond_eor, is_big, is_plus, ret, type, i, found, t_ret;
u_int8_t *beg, *dest, *end, *hk, *src;
void *memp;
/*
* Items that were already offpage (ISBIG) were handled before
* we get in here. So, we need only handle cases where the old
* key is on a regular page. That leaves us 6 cases:
* 1. Original data onpage; new data is smaller
* 2. Original data onpage; new data is the same size
* 3. Original data onpage; new data is bigger, but not ISBIG,
* fits on page
* 4. Original data onpage; new data is bigger, but not ISBIG,
* does not fit on page
* 5. Original data onpage; New data is an off-page item.
* 6. Original data was offpage; new item is smaller.
*
* Cases 1-3 are essentially the same (and should be the common case).
* We handle 4-6 as delete and add.
*/
dbp = dbc->dbp;
env = dbp->env;
hcp = (HASH_CURSOR *)dbc->internal;
found = 0;
dbc_n = memp = NULL;
carray = NULL;
/*
* We need to compute the number of bytes that we are adding or
* removing from the entry. Normally, we can simply subtract
* the number of bytes we are replacing (dbt->dlen) from the
* number of bytes we are inserting (dbt->size). However, if
* we are doing a partial put off the end of a record, then this
* formula doesn't work, because we are essentially adding
* new bytes.
*/
if (dbt->size > dbt->dlen) {
change = dbt->size - dbt->dlen;
is_plus = 1;
} else {
change = dbt->dlen - dbt->size;
is_plus = 0;
}
hk = H_PAIRDATA(dbp, hcp->page, hcp->indx);
is_big = HPAGE_PTYPE(hk) == H_OFFPAGE;
if (is_big)
memcpy(&len, HOFFPAGE_TLEN(hk), sizeof(u_int32_t));
else
len = LEN_HKEYDATA(dbp, hcp->page,
dbp->pgsize, H_DATAINDEX(hcp->indx));
beyond_eor = dbt->doff + dbt->dlen > len;
if (beyond_eor) {
/*
* The change is beyond the end of record. If change
* is a positive number, we can simply add the extension
* to it. However, if change is negative, then we need
* to figure out if the extension is larger than the
* negative change.
*/
if (is_plus)
change += dbt->doff + dbt->dlen - len;
else if (dbt->doff + dbt->dlen - len > change) {
/* Extension bigger than change */
is_plus = 1;
change = (dbt->doff + dbt->dlen - len) - change;
} else /* Extension is smaller than change. */
change -= (dbt->doff + dbt->dlen - len);
}
newlen = (is_plus ? len + change : len - change);
if (ISBIG(hcp, newlen) ||
(is_plus && change > P_FREESPACE(dbp, hcp->page)) ||
beyond_eor || is_big) {
/*
* If we are in cases 4 or 5 then is_plus will be true.
* If we don't have a transaction then we cannot roll back,
* make sure there is enough room for the new page.
*/
if (is_plus && dbc->txn == NULL &&
dbp->mpf->mfp->maxpgno != 0 &&
dbp->mpf->mfp->maxpgno == dbp->mpf->mfp->last_pgno)
return (__db_space_err(dbp));
/*
* Cases 4-6 -- two subcases.
* A. This is not really a partial operation, but an overwrite.
* Simple del and add works.
* B. This is a partial and we need to construct the data that
* we are really inserting (yuck).
* In both cases, we need to grab the key off the page (in
* some cases we could do this outside of this routine; for
* cleanliness we do it here. If you happen to be on a big
* key, this could be a performance hit).
*/
memset(&tmp, 0, sizeof(tmp));
if ((ret = __db_ret(dbp, dbc->thread_info, dbc->txn,
hcp->page, H_KEYINDEX(hcp->indx), &tmp,
&dbc->my_rkey.data, &dbc->my_rkey.ulen)) != 0)
return (ret);
/*
* In cases 4-6, a delete and insert works, but we need to
* track and update any cursors pointing to the item being
* moved.
*/
orig_pgno = PGNO(hcp->page);
orig_indx = hcp->indx;
if ((ret = __ham_get_clist(dbp,
orig_pgno, orig_indx, &carray)) != 0)
goto err;
/* Preserve duplicate info. */
dup_flag = F_ISSET(hcp, H_ISDUP);
if (dbt->doff == 0 && dbt->dlen == len) {
type = (dup_flag ? H_DUPLICATE : H_KEYDATA);
new_dbt = dbt;
} else { /* Case B */
type = HPAGE_PTYPE(hk) != H_OFFPAGE ?
HPAGE_PTYPE(hk) : H_KEYDATA;
memset(&tdata, 0, sizeof(tdata));
memsize = 0;
if ((ret = __db_ret(dbp, dbc->thread_info,
dbc->txn, hcp->page, H_DATAINDEX(hcp->indx),
&tdata, &memp, &memsize)) != 0)
goto err;
/* Now shift old data around to make room for new. */
if (is_plus) {
if ((ret = __os_realloc(env,
tdata.size + change, &tdata.data)) != 0)
return (ret);
memp = tdata.data;
memsize = tdata.size + change;
memset((u_int8_t *)tdata.data + tdata.size,
0, change);
}
end = (u_int8_t *)tdata.data + tdata.size;
src = (u_int8_t *)tdata.data + dbt->doff + dbt->dlen;
if (src < end && tdata.size > dbt->doff + dbt->dlen) {
len = tdata.size - (dbt->doff + dbt->dlen);
if (is_plus)
dest = src + change;
else
dest = src - change;
memmove(dest, src, len);
}
memcpy((u_int8_t *)tdata.data + dbt->doff,
dbt->data, dbt->size);
if (is_plus)
tdata.size += change;
else
tdata.size -= change;
new_dbt = &tdata;
}
if ((ret = __ham_del_pair(dbc, HAM_DEL_NO_CURSOR)) != 0)
goto err;
/*
* Save the state of the cursor after the delete, so that we
* can adjust any cursors impacted by the delete. Don't just
* update the cursors now, to avoid ambiguity in reversing the
* adjustments during abort.
*/
if ((ret = __dbc_dup(dbc, &dbc_n, DB_POSITION)) != 0)
goto err;
if ((ret = __ham_add_el(dbc, &tmp, new_dbt, type)) != 0)
goto err;
F_SET(hcp, dup_flag);
/*
* If the delete/insert pair caused the item to be moved
* to another location (which is possible for duplicate sets
* that are moved onto another page in the bucket), then update
* any impacted cursors.
*/
if (((HASH_CURSOR*)dbc_n->internal)->pgno != hcp->pgno ||
((HASH_CURSOR*)dbc_n->internal)->indx != hcp->indx) {
/*
* Set any cursors pointing to items in the moved
* duplicate set to the destination location and reset
* the deleted flag. This can't be done earlier, since
* the insert location is not computed until the actual
* __ham_add_el call is made.
*/
if (carray != NULL) {
for (i = 0; carray[i] != NULL; i++) {
cp = (HASH_CURSOR*)carray[i]->internal;
cp->pgno = hcp->pgno;
cp->indx = hcp->indx;
F_CLR(cp, H_DELETED);
found = 1;
}
/*
* Only log the update once, since the recovery
* code iterates through all open cursors and
* applies the change to all matching cursors.
*/
if (found && DBC_LOGGING(dbc) &&
IS_SUBTRANSACTION(dbc->txn)) {
if ((ret =
__ham_chgpg_log(dbp,
dbc->txn, &new_lsn, 0,
DB_HAM_CHGPG, orig_pgno, hcp->pgno,
orig_indx, hcp->indx)) != 0)
goto err;
}
}
/*
* Update any cursors impacted by the delete. Do this
* after chgpg log so that recovery does not re-bump
* cursors pointing to the deleted item.
*/
ret = __hamc_update(dbc_n, 0, DB_HAM_CURADJ_DEL, 0);
}
err: if (dbc_n != NULL && (t_ret = __dbc_close(dbc_n)) != 0 &&
ret == 0)
ret = t_ret;
if (carray != NULL)
__os_free(env, carray);
if (memp != NULL)
__os_free(env, memp);
return (ret);
}
/*
* Set up pointer into existing data. Do it before the log
* message so we can use it inside of the log setup.
*/
beg = HKEYDATA_DATA(H_PAIRDATA(dbp, hcp->page, hcp->indx));
beg += dbt->doff;
/*
* If we are going to have to move bytes at all, figure out
* all the parameters here. Then log the call before moving
* anything around.
*/
if (DBC_LOGGING(dbc)) {
old_dbt.data = beg;
old_dbt.size = dbt->dlen;
if ((ret = __ham_replace_log(dbp,
dbc->txn, &new_lsn, 0, PGNO(hcp->page),
(u_int32_t)H_DATAINDEX(hcp->indx), &LSN(hcp->page),
(int32_t)dbt->doff, &old_dbt, dbt, make_dup)) != 0)
return (ret);
} else
LSN_NOT_LOGGED(new_lsn);
LSN(hcp->page) = new_lsn; /* Structure assignment. */
__ham_onpage_replace(dbp, hcp->page, (u_int32_t)H_DATAINDEX(hcp->indx),
(int32_t)dbt->doff, change, is_plus, dbt);
return (0);
}
/*
* Replace data on a page with new data, possibly growing or shrinking what's
* there. This is called on two different occasions. On one (from replpair)
* we are interested in changing only the data. On the other (from recovery)
* we are replacing the entire data (header and all) with a new element. In
* the latter case, the off argument is negative.
* pagep: the page that we're changing
* ndx: page index of the element that is growing/shrinking.
* off: Offset at which we are beginning the replacement.
* change: the number of bytes (+ or -) that the element is growing/shrinking.
* dbt: the new data that gets written at beg.
*
* PUBLIC: void __ham_onpage_replace __P((DB *, PAGE *, u_int32_t,
* PUBLIC: int32_t, u_int32_t, int, DBT *));
*/
void
__ham_onpage_replace(dbp, pagep, ndx, off, change, is_plus, dbt)
DB *dbp;
PAGE *pagep;
u_int32_t ndx;
int32_t off;
u_int32_t change;
int is_plus;
DBT *dbt;
{
db_indx_t i, *inp;
int32_t len;
size_t pgsize;
u_int8_t *src, *dest;
int zero_me;
pgsize = dbp->pgsize;
inp = P_INP(dbp, pagep);
if (change != 0) {
zero_me = 0;
src = (u_int8_t *)(pagep) + HOFFSET(pagep);
if (off < 0)
len = inp[ndx] - HOFFSET(pagep);
else if ((u_int32_t)off >=
LEN_HKEYDATA(dbp, pagep, pgsize, ndx)) {
len = (int32_t)(HKEYDATA_DATA(P_ENTRY(dbp, pagep, ndx))
+ LEN_HKEYDATA(dbp, pagep, pgsize, ndx) - src);
zero_me = 1;
} else
len = (int32_t)(
(HKEYDATA_DATA(P_ENTRY(dbp, pagep, ndx)) + off) -
src);
if (is_plus)
dest = src - change;
else
dest = src + change;
memmove(dest, src, (size_t)len);
if (zero_me)
memset(dest + len, 0, change);
/* Now update the indices. */
for (i = ndx; i < NUM_ENT(pagep); i++) {
if (is_plus)
inp[i] -= change;
else
inp[i] += change;
}
if (is_plus)
HOFFSET(pagep) -= change;
else
HOFFSET(pagep) += change;
}
if (off >= 0)
memcpy(HKEYDATA_DATA(P_ENTRY(dbp, pagep, ndx)) + off,
dbt->data, dbt->size);
else
memcpy(P_ENTRY(dbp, pagep, ndx), dbt->data, dbt->size);
}
/*
* PUBLIC: int __ham_split_page __P((DBC *, u_int32_t, u_int32_t));
*/
int
__ham_split_page(dbc, obucket, nbucket)
DBC *dbc;
u_int32_t obucket, nbucket;
{
DB *dbp;
DBC **carray, *tmp_dbc;
DBT key, page_dbt;
DB_LOCK block;
DB_LSN new_lsn;
DB_MPOOLFILE *mpf;
ENV *env;
HASH_CURSOR *hcp, *cp;
PAGE **pp, *old_pagep, *temp_pagep, *new_pagep;
db_indx_t n, dest_indx;
db_pgno_t bucket_pgno, npgno, next_pgno;
u_int32_t big_len, len;
int found, i, ret, t_ret;
void *big_buf;
dbp = dbc->dbp;
carray = NULL;
env = dbp->env;
mpf = dbp->mpf;
hcp = (HASH_CURSOR *)dbc->internal;
temp_pagep = old_pagep = new_pagep = NULL;
npgno = PGNO_INVALID;
LOCK_INIT(block);
bucket_pgno = BUCKET_TO_PAGE(hcp, obucket);
if ((ret = __db_lget(dbc,
0, bucket_pgno, DB_LOCK_WRITE, 0, &block)) != 0)
goto err;
if ((ret = __memp_fget(mpf, &bucket_pgno, dbc->thread_info, dbc->txn,
DB_MPOOL_CREATE | DB_MPOOL_DIRTY, &old_pagep)) != 0)
goto err;
/* Sort any unsorted pages before doing a hash split. */
if (old_pagep->type == P_HASH_UNSORTED)
if ((ret = __ham_sort_page_cursor(dbc, old_pagep)) != 0)
return (ret);
/* Properly initialize the new bucket page. */
npgno = BUCKET_TO_PAGE(hcp, nbucket);
if ((ret = __memp_fget(mpf, &npgno, dbc->thread_info, dbc->txn,
DB_MPOOL_CREATE | DB_MPOOL_DIRTY, &new_pagep)) != 0)
goto err;
P_INIT(new_pagep,
dbp->pgsize, npgno, PGNO_INVALID, PGNO_INVALID, 0, P_HASH);
temp_pagep = hcp->split_buf;
memcpy(temp_pagep, old_pagep, dbp->pgsize);
if (DBC_LOGGING(dbc)) {
page_dbt.size = dbp->pgsize;
page_dbt.data = old_pagep;
if ((ret = __ham_splitdata_log(dbp,
dbc->txn, &new_lsn, 0, SPLITOLD,
PGNO(old_pagep), &page_dbt, &LSN(old_pagep))) != 0)
goto err;
} else
LSN_NOT_LOGGED(new_lsn);
LSN(old_pagep) = new_lsn; /* Structure assignment. */
P_INIT(old_pagep, dbp->pgsize, PGNO(old_pagep), PGNO_INVALID,
PGNO_INVALID, 0, P_HASH);
big_len = 0;
big_buf = NULL;
memset(&key, 0, sizeof(key));
while (temp_pagep != NULL) {
if ((ret = __ham_get_clist(dbp,
PGNO(temp_pagep), NDX_INVALID, &carray)) != 0)
goto err;
for (n = 0; n < (db_indx_t)NUM_ENT(temp_pagep); n += 2) {
if ((ret = __db_ret(dbp, dbc->thread_info,
dbc->txn, temp_pagep, H_KEYINDEX(n),
&key, &big_buf, &big_len)) != 0)
goto err;
if (__ham_call_hash(dbc, key.data, key.size) == obucket)
pp = &old_pagep;
else
pp = &new_pagep;
/*
* Figure out how many bytes we need on the new
* page to store the key/data pair.
*/
len = LEN_HITEM(dbp, temp_pagep, dbp->pgsize,
H_DATAINDEX(n)) +
LEN_HITEM(dbp, temp_pagep, dbp->pgsize,
H_KEYINDEX(n)) +
2 * sizeof(db_indx_t);
if (P_FREESPACE(dbp, *pp) < len) {
if (DBC_LOGGING(dbc)) {
page_dbt.size = dbp->pgsize;
page_dbt.data = *pp;
if ((ret = __ham_splitdata_log(dbp,
dbc->txn, &new_lsn, 0,
SPLITNEW, PGNO(*pp), &page_dbt,
&LSN(*pp))) != 0)
goto err;
} else
LSN_NOT_LOGGED(new_lsn);
LSN(*pp) = new_lsn;
if ((ret =
__ham_add_ovflpage(dbc, *pp, 1, pp)) != 0)
goto err;
}
dest_indx = NDX_INVALID;
if ((ret = __ham_copypair(dbc, temp_pagep,
H_KEYINDEX(n), *pp, &dest_indx)) != 0)
goto err;
/*
* Update any cursors that were pointing to items
* shuffled because of this insert.
* Use __hamc_update, since the cursor adjustments are
* the same as those required for an insert. The
* overhead of creating a cursor is worthwhile to save
* replicating the adjustment functionality.
* Adjusting shuffled cursors needs to be done prior to
* adjusting any cursors that were pointing to the
* moved item.
* All pages in a bucket are sorted, but the items are
* not sorted across pages within a bucket. This means
* that splitting the first page in a bucket into two
* new buckets won't require any cursor shuffling,
* since all inserts will be appends. Splitting of the
* second etc page from the initial bucket could
* cause an item to be inserted at any location on a
* page (since items already inserted from page 1 of
* the initial bucket may overlap), so only adjust
* cursors for the second etc pages within a bucket.
*/
if (PGNO(temp_pagep) != bucket_pgno) {
if ((ret = __db_cursor_int(dbp,
dbc->thread_info, dbc->txn, dbp->type,
PGNO_INVALID, 0, DB_LOCK_INVALIDID,
&tmp_dbc)) != 0)
goto err;
hcp = (HASH_CURSOR*)tmp_dbc->internal;
hcp->pgno = PGNO(*pp);
hcp->indx = dest_indx;
hcp->dup_off = 0;
hcp->order = 0;
if ((ret = __hamc_update(
tmp_dbc, len, DB_HAM_CURADJ_ADD, 0)) != 0)
goto err;
if ((ret = __dbc_close(tmp_dbc)) != 0)
goto err;
}
/* Update any cursors pointing at the moved item. */
if (carray != NULL) {
found = 0;
for (i = 0; carray[i] != NULL; i++) {
cp =
(HASH_CURSOR *)carray[i]->internal;
if (cp->pgno == PGNO(temp_pagep) &&
cp->indx == n) {
cp->pgno = PGNO(*pp);
cp->indx = dest_indx;
found = 1;
}
}
/*
* Only log the update once, since the recovery
* code iterates through all open cursors and
* applies the change to all matching cursors.
*/
if (found && DBC_LOGGING(dbc) &&
IS_SUBTRANSACTION(dbc->txn)) {
if ((ret =
__ham_chgpg_log(dbp,
dbc->txn, &new_lsn, 0,
DB_HAM_SPLIT, PGNO(temp_pagep),
PGNO(*pp), n, dest_indx)) != 0)
goto err;
}
}
}
next_pgno = NEXT_PGNO(temp_pagep);
/* Clear temp_page; if it's a link overflow page, free it. */
if (PGNO(temp_pagep) != bucket_pgno && (ret =
__db_free(dbc, temp_pagep)) != 0) {
temp_pagep = NULL;
goto err;
}
if (next_pgno == PGNO_INVALID)
temp_pagep = NULL;
else if ((ret = __memp_fget(mpf,
&next_pgno, dbc->thread_info, dbc->txn,
DB_MPOOL_CREATE | DB_MPOOL_DIRTY, &temp_pagep)) != 0)
goto err;
if (temp_pagep != NULL) {
if (DBC_LOGGING(dbc)) {
page_dbt.size = dbp->pgsize;
page_dbt.data = temp_pagep;
if ((ret = __ham_splitdata_log(dbp,
dbc->txn, &new_lsn, 0,
SPLITOLD, PGNO(temp_pagep),
&page_dbt, &LSN(temp_pagep))) != 0)
goto err;
} else
LSN_NOT_LOGGED(new_lsn);
LSN(temp_pagep) = new_lsn;
}
if (carray != NULL) /* We never knew its size. */
__os_free(env, carray);
carray = NULL;
}
if (big_buf != NULL)
__os_free(env, big_buf);
/*
* If the original bucket spanned multiple pages, then we've got
* a pointer to a page that used to be on the bucket chain. It
* should be deleted.
*/
if (temp_pagep != NULL && PGNO(temp_pagep) != bucket_pgno &&
(ret = __db_free(dbc, temp_pagep)) != 0) {
temp_pagep = NULL;
goto err;
}
/*
* Write new buckets out.
*/
if (DBC_LOGGING(dbc)) {
page_dbt.size = dbp->pgsize;
page_dbt.data = old_pagep;
if ((ret = __ham_splitdata_log(dbp, dbc->txn,
&new_lsn, 0, SPLITNEW, PGNO(old_pagep), &page_dbt,
&LSN(old_pagep))) != 0)
goto err;
LSN(old_pagep) = new_lsn;
page_dbt.data = new_pagep;
if ((ret = __ham_splitdata_log(dbp, dbc->txn, &new_lsn, 0,
SPLITNEW, PGNO(new_pagep), &page_dbt,
&LSN(new_pagep))) != 0)
goto err;
LSN(new_pagep) = new_lsn;
} else {
LSN_NOT_LOGGED(LSN(old_pagep));
LSN_NOT_LOGGED(LSN(new_pagep));
}
ret = __memp_fput(mpf, dbc->thread_info, old_pagep, dbc->priority);
if ((t_ret = __memp_fput(mpf,
dbc->thread_info, new_pagep, dbc->priority)) != 0 && ret == 0)
ret = t_ret;
if (0) {
err: if (old_pagep != NULL)
(void)__memp_fput(mpf,
dbc->thread_info, old_pagep, dbc->priority);
if (new_pagep != NULL) {
P_INIT(new_pagep, dbp->pgsize,
npgno, PGNO_INVALID, PGNO_INVALID, 0, P_HASH);
(void)__memp_fput(mpf,
dbc->thread_info, new_pagep, dbc->priority);
}
if (temp_pagep != NULL && PGNO(temp_pagep) != bucket_pgno)
(void)__memp_fput(mpf,
dbc->thread_info, temp_pagep, dbc->priority);
}
if ((t_ret = __TLPUT(dbc, block)) != 0 && ret == 0)
ret = t_ret;
if (carray != NULL) /* We never knew its size. */
__os_free(env, carray);
return (ret);
}
/*
* Add the given pair to the page. The page in question may already be
* held (i.e. it was already gotten). If it is, then the page is passed
* in via the pagep parameter. On return, pagep will contain the page
* to which we just added something. This allows us to link overflow
* pages and return the new page having correctly put the last page.
*
* PUBLIC: int __ham_add_el __P((DBC *, const DBT *, const DBT *, int));
*/
int
__ham_add_el(dbc, key, val, type)
DBC *dbc;
const DBT *key, *val;
int type;
{
const DBT *pkey, *pdata;
DB *dbp;
DBT key_dbt, data_dbt;
DB_LSN new_lsn;
DB_MPOOLFILE *mpf;
HASH_CURSOR *hcp;
HOFFPAGE doff, koff;
db_pgno_t next_pgno, pgno;
u_int32_t data_size, key_size;
u_int32_t pages, pagespace, pairsize, rectype;
int do_expand, data_type, is_keybig, is_databig, key_type, match, ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
hcp = (HASH_CURSOR *)dbc->internal;
do_expand = 0;
pgno = hcp->seek_found_page != PGNO_INVALID ?
hcp->seek_found_page : hcp->pgno;
if (hcp->page == NULL && (ret = __memp_fget(mpf, &pgno,
dbc->thread_info, dbc->txn, DB_MPOOL_CREATE, &hcp->page)) != 0)
return (ret);
key_size = HKEYDATA_PSIZE(key->size);
data_size = HKEYDATA_PSIZE(val->size);
is_keybig = ISBIG(hcp, key->size);
is_databig = ISBIG(hcp, val->size);
if (is_keybig)
key_size = HOFFPAGE_PSIZE;
if (is_databig)
data_size = HOFFPAGE_PSIZE;
pairsize = key_size + data_size;
/* Advance to first page in chain with room for item. */
while (H_NUMPAIRS(hcp->page) && NEXT_PGNO(hcp->page) != PGNO_INVALID) {
/*
* This may not be the end of the chain, but the pair may fit
* anyway. Check if it's a bigpair that fits or a regular
* pair that fits.
*/
if (P_FREESPACE(dbp, hcp->page) >= pairsize)
break;
next_pgno = NEXT_PGNO(hcp->page);
if ((ret = __ham_next_cpage(dbc, next_pgno)) != 0)
return (ret);
}
/*
* Check if we need to allocate a new page.
*/
if (P_FREESPACE(dbp, hcp->page) < pairsize) {
do_expand = 1;
if ((ret = __memp_dirty(mpf, &hcp->page,
dbc->thread_info, dbc->txn, dbc->priority, 0)) != 0)
return (ret);
if ((ret = __ham_add_ovflpage(dbc,
(PAGE *)hcp->page, 1, (PAGE **)&hcp->page)) != 0)
return (ret);
hcp->pgno = PGNO(hcp->page);
}
/*
* If we don't have a transaction then make sure we will not
* run out of file space before updating the key or data.
*/
if (dbc->txn == NULL &&
dbp->mpf->mfp->maxpgno != 0 && (is_keybig || is_databig)) {
pagespace = P_MAXSPACE(dbp, dbp->pgsize);
pages = 0;
if (is_databig)
pages = ((data_size - 1) / pagespace) + 1;
if (is_keybig) {
pages += ((key->size - 1) / pagespace) + 1;
if (pages >
(dbp->mpf->mfp->maxpgno - dbp->mpf->mfp->last_pgno))
return (__db_space_err(dbp));
}
}
if ((ret = __memp_dirty(mpf,
&hcp->page, dbc->thread_info, dbc->txn, dbc->priority, 0)) != 0)
return (ret);
/*
* Update cursor.
*/
hcp->indx = hcp->seek_found_indx;
F_CLR(hcp, H_DELETED);
if (is_keybig) {
koff.type = H_OFFPAGE;
UMRW_SET(koff.unused[0]);
UMRW_SET(koff.unused[1]);
UMRW_SET(koff.unused[2]);
if ((ret = __db_poff(dbc, key, &koff.pgno)) != 0)
return (ret);
koff.tlen = key->size;
key_dbt.data = &koff;
key_dbt.size = sizeof(koff);
pkey = &key_dbt;
key_type = H_OFFPAGE;
} else {
pkey = key;
key_type = H_KEYDATA;
}
if (is_databig) {
doff.type = H_OFFPAGE;
UMRW_SET(doff.unused[0]);
UMRW_SET(doff.unused[1]);
UMRW_SET(doff.unused[2]);
if ((ret = __db_poff(dbc, val, &doff.pgno)) != 0)
return (ret);
doff.tlen = val->size;
data_dbt.data = &doff;
data_dbt.size = sizeof(doff);
pdata = &data_dbt;
data_type = H_OFFPAGE;
} else {
pdata = val;
data_type = type;
}
/* Sort any unsorted pages before doing the insert. */
if (((PAGE *)hcp->page)->type == P_HASH_UNSORTED)
if ((ret = __ham_sort_page_cursor(dbc, hcp->page)) != 0)
return (ret);
/*
* If inserting on the page found initially, then use the saved index.
* If inserting on a different page resolve the index now so it can be
* logged.
* The page might be different, if P_FREESPACE constraint failed (due
* to a partial put that increases the data size).
*/
if (PGNO(hcp->page) != hcp->seek_found_page) {
if ((ret = __ham_getindex(dbc, hcp->page, pkey,
key_type, &match, &hcp->seek_found_indx)) != 0)
return (ret);
hcp->seek_found_page = PGNO(hcp->page);
DB_ASSERT(dbp->env, hcp->seek_found_indx <= NUM_ENT(hcp->page));
}
if (DBC_LOGGING(dbc)) {
rectype = PUTPAIR;
if (is_databig)
rectype |= PAIR_DATAMASK;
if (is_keybig)
rectype |= PAIR_KEYMASK;
if (type == H_DUPLICATE)
rectype |= PAIR_DUPMASK;
if ((ret = __ham_insdel_log(dbp, dbc->txn, &new_lsn, 0,
rectype, PGNO(hcp->page), (u_int32_t)hcp->seek_found_indx,
&LSN(hcp->page), pkey, pdata)) != 0)
return (ret);
} else
LSN_NOT_LOGGED(new_lsn);
/* Move lsn onto page. */
LSN(hcp->page) = new_lsn; /* Structure assignment. */
if ((ret = __ham_insertpair(dbc, hcp->page,
&hcp->seek_found_indx, pkey, pdata, key_type, data_type)) != 0)
return (ret);
/*
* Adjust any cursors that were pointing at items whose indices were
* shuffled due to the insert.
*/
if ((ret = __hamc_update(dbc, pairsize, DB_HAM_CURADJ_ADD, 0)) != 0)
return (ret);
/*
* For splits, we are going to update item_info's page number
* field, so that we can easily return to the same page the
* next time we come in here. For other operations, this doesn't
* matter, since this is the last thing that happens before we return
* to the user program.
*/
hcp->pgno = PGNO(hcp->page);
/*
* When moving an item from one page in a bucket to another, due to an
* expanding on page duplicate set, or a partial put that increases the
* size of an item. The destination index needs to be saved so that the
* __ham_replpair code can update any cursors impacted by the move. For
* other operations, this does not matter, since this is the last thing
* that happens before we return to the user program.
*/
hcp->indx = hcp->seek_found_indx;
/*
* XXX
* Maybe keep incremental numbers here.
*/
if (!STD_LOCKING(dbc)) {
if ((ret = __ham_dirty_meta(dbc, 0)) != 0)
return (ret);
hcp->hdr->nelem++;
}
if (do_expand || (hcp->hdr->ffactor != 0 &&
(u_int32_t)H_NUMPAIRS(hcp->page) > hcp->hdr->ffactor))
F_SET(hcp, H_EXPAND);
return (0);
}
/*
* Special insert pair call -- copies a key/data pair from one page to
* another. Works for all types of hash entries (H_OFFPAGE, H_KEYDATA,
* H_DUPLICATE, H_OFFDUP). Since we log splits at a high level, we
* do not need to do any logging here.
*
* dest_indx is an optional parameter, it serves several purposes:
* * ignored if NULL
* * Used as an insert index if non-null and not NDX_INVALID
* * Populated with the insert index if non-null and NDX_INVALID
*
* PUBLIC: int __ham_copypair __P((DBC *, PAGE *, u_int32_t,
* PUBLIC: PAGE *, db_indx_t *));
*/
int
__ham_copypair(dbc, src_page, src_ndx, dest_page, dest_indx)
DBC *dbc;
PAGE *src_page;
u_int32_t src_ndx;
PAGE *dest_page;
db_indx_t *dest_indx;
{
DB *dbp;
DBT tkey, tdata;
db_indx_t kindx, dindx;
int ktype, dtype, ret;
dbp = dbc->dbp;
ret = 0;
memset(&tkey, 0, sizeof(tkey));
memset(&tdata, 0, sizeof(tdata));
ktype = HPAGE_TYPE(dbp, src_page, H_KEYINDEX(src_ndx));
dtype = HPAGE_TYPE(dbp, src_page, H_DATAINDEX(src_ndx));
kindx = H_KEYINDEX(src_ndx);
dindx = H_DATAINDEX(src_ndx);
if (ktype == H_OFFPAGE) {
tkey.data = P_ENTRY(dbp, src_page, kindx);
tkey.size = LEN_HITEM(dbp, src_page, dbp->pgsize, kindx);
} else {
tkey.data = HKEYDATA_DATA(P_ENTRY(dbp, src_page, kindx));
tkey.size = LEN_HKEYDATA(dbp, src_page, dbp->pgsize, kindx);
}
if (dtype == H_OFFPAGE) {
tdata.data = P_ENTRY(dbp, src_page, dindx);
tdata.size = LEN_HITEM(dbp, src_page, dbp->pgsize, dindx);
} else {
tdata.data = HKEYDATA_DATA(P_ENTRY(dbp, src_page, dindx));
tdata.size = LEN_HKEYDATA(dbp, src_page, dbp->pgsize, dindx);
}
if ((ret = __ham_insertpair(dbc, dest_page, dest_indx,
&tkey, &tdata, ktype, dtype)) != 0)
return (ret);
return (ret);
}
/*
* __ham_add_ovflpage --
*
* Returns:
* 0 on success: pp points to new page; !0 on error, pp not valid.
*
* PUBLIC: int __ham_add_ovflpage __P((DBC *, PAGE *, int, PAGE **));
*/
int
__ham_add_ovflpage(dbc, pagep, release, pp)
DBC *dbc;
PAGE *pagep;
int release;
PAGE **pp;
{
DB *dbp;
DB_LSN new_lsn;
DB_MPOOLFILE *mpf;
PAGE *new_pagep;
int ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
DB_ASSERT(dbp->env, IS_DIRTY(pagep));
if ((ret = __db_new(dbc, P_HASH, &new_pagep)) != 0)
return (ret);
if (DBC_LOGGING(dbc)) {
if ((ret = __ham_newpage_log(dbp, dbc->txn, &new_lsn, 0,
PUTOVFL, PGNO(pagep), &LSN(pagep), PGNO(new_pagep),
&LSN(new_pagep), PGNO_INVALID, NULL)) != 0) {
(void)__memp_fput(mpf,
dbc->thread_info, pagep, dbc->priority);
return (ret);
}
} else
LSN_NOT_LOGGED(new_lsn);
/* Move lsn onto page. */
LSN(pagep) = LSN(new_pagep) = new_lsn;
NEXT_PGNO(pagep) = PGNO(new_pagep);
PREV_PGNO(new_pagep) = PGNO(pagep);
if (release)
ret = __memp_fput(mpf, dbc->thread_info, pagep, dbc->priority);
*pp = new_pagep;
return (ret);
}
/*
* PUBLIC: int __ham_get_cpage __P((DBC *, db_lockmode_t));
*/
int
__ham_get_cpage(dbc, mode)
DBC *dbc;
db_lockmode_t mode;
{
DB *dbp;
DB_LOCK tmp_lock;
DB_MPOOLFILE *mpf;
HASH_CURSOR *hcp;
int ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
hcp = (HASH_CURSOR *)dbc->internal;
ret = 0;
/*
* There are four cases with respect to buckets and locks.
* 1. If there is no lock held, then if we are locking, we should
* get the lock.
* 2. If there is a lock held, it's for the current bucket, and it's
* for the right mode, we don't need to do anything.
* 3. If there is a lock held for the current bucket but it's not
* strong enough, we need to upgrade.
* 4. If there is a lock, but it's for a different bucket, then we need
* to release the existing lock and get a new lock.
*/
LOCK_INIT(tmp_lock);
if (STD_LOCKING(dbc)) {
if (hcp->lbucket != hcp->bucket) { /* Case 4 */
if ((ret = __TLPUT(dbc, hcp->lock)) != 0)
return (ret);
LOCK_INIT(hcp->lock);
}
/*
* See if we have the right lock. If we are doing
* dirty reads we assume the write lock has been downgraded.
*/
if ((LOCK_ISSET(hcp->lock) &&
((hcp->lock_mode == DB_LOCK_READ ||
F_ISSET(dbp, DB_AM_READ_UNCOMMITTED)) &&
mode == DB_LOCK_WRITE))) {
/* Case 3. */
tmp_lock = hcp->lock;
LOCK_INIT(hcp->lock);
}
/* Acquire the lock. */
if (!LOCK_ISSET(hcp->lock))
/* Cases 1, 3, and 4. */
if ((ret = __ham_lock_bucket(dbc, mode)) != 0)
return (ret);
if (ret == 0) {
hcp->lock_mode = mode;
hcp->lbucket = hcp->bucket;
/* Case 3: release the original lock. */
if ((ret = __ENV_LPUT(dbp->env, tmp_lock)) != 0)
return (ret);
} else if (LOCK_ISSET(tmp_lock))
hcp->lock = tmp_lock;
}
if (ret == 0 && hcp->page == NULL) {
if (hcp->pgno == PGNO_INVALID)
hcp->pgno = BUCKET_TO_PAGE(hcp, hcp->bucket);
if ((ret = __memp_fget(mpf,
&hcp->pgno, dbc->thread_info, dbc->txn,
DB_MPOOL_CREATE, &hcp->page)) != 0)
return (ret);
}
return (0);
}
/*
* Get a new page at the cursor, putting the last page if necessary.
* If the flag is set to H_ISDUP, then we are talking about the
* duplicate page, not the main page.
*
* PUBLIC: int __ham_next_cpage __P((DBC *, db_pgno_t));
*/
int
__ham_next_cpage(dbc, pgno)
DBC *dbc;
db_pgno_t pgno;
{
DB *dbp;
DB_MPOOLFILE *mpf;
HASH_CURSOR *hcp;
PAGE *p;
int ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
hcp = (HASH_CURSOR *)dbc->internal;
if (hcp->page != NULL && (ret = __memp_fput(mpf,
dbc->thread_info, hcp->page, dbc->priority)) != 0)
return (ret);
hcp->page = NULL;
if ((ret = __memp_fget(mpf, &pgno, dbc->thread_info, dbc->txn,
DB_MPOOL_CREATE, &p)) != 0)
return (ret);
hcp->page = p;
hcp->pgno = pgno;
hcp->indx = 0;
return (0);
}
/*
* __ham_lock_bucket --
* Get the lock on a particular bucket.
*
* PUBLIC: int __ham_lock_bucket __P((DBC *, db_lockmode_t));
*/
int
__ham_lock_bucket(dbc, mode)
DBC *dbc;
db_lockmode_t mode;
{
HASH_CURSOR *hcp;
db_pgno_t pgno;
int gotmeta, ret;
hcp = (HASH_CURSOR *)dbc->internal;
gotmeta = hcp->hdr == NULL ? 1 : 0;
if (gotmeta)
if ((ret = __ham_get_meta(dbc)) != 0)
return (ret);
pgno = BUCKET_TO_PAGE(hcp, hcp->bucket);
if (gotmeta)
if ((ret = __ham_release_meta(dbc)) != 0)
return (ret);
ret = __db_lget(dbc, 0, pgno, mode, 0, &hcp->lock);
hcp->lock_mode = mode;
return (ret);
}
/*
* __ham_dpair --
* Delete a pair on a page, paying no attention to what the pair
* represents. The caller is responsible for freeing up duplicates
* or offpage entries that might be referenced by this pair.
*
* Recovery assumes that this may be called without the metadata
* page pinned.
*
* PUBLIC: void __ham_dpair __P((DB *, PAGE *, u_int32_t));
*/
void
__ham_dpair(dbp, p, indx)
DB *dbp;
PAGE *p;
u_int32_t indx;
{
db_indx_t delta, n, *inp;
u_int8_t *dest, *src;
inp = P_INP(dbp, p);
/*
* Compute "delta", the amount we have to shift all of the
* offsets. To find the delta, we just need to calculate
* the size of the pair of elements we are removing.
*/
delta = H_PAIRSIZE(dbp, p, dbp->pgsize, indx);
/*
* The hard case: we want to remove something other than
* the last item on the page. We need to shift data and
* offsets down.
*/
if ((db_indx_t)indx != NUM_ENT(p) - 2) {
/*
* Move the data: src is the first occupied byte on
* the page. (Length is delta.)
*/
src = (u_int8_t *)p + HOFFSET(p);
/*
* Destination is delta bytes beyond src. This might
* be an overlapping copy, so we have to use memmove.
*/
dest = src + delta;
memmove(dest, src, inp[H_DATAINDEX(indx)] - HOFFSET(p));
}
/* Adjust page metadata. */
HOFFSET(p) = HOFFSET(p) + delta;
NUM_ENT(p) = NUM_ENT(p) - 2;
/* Adjust the offsets. */
for (n = (db_indx_t)indx; n < (db_indx_t)(NUM_ENT(p)); n++)
inp[n] = inp[n + 2] + delta;
}
/*
* __hamc_delpg --
*
* Adjust the cursors after we've emptied a page in a bucket, taking
* care that when we move cursors pointing to deleted items, their
* orders don't collide with the orders of cursors on the page we move
* them to (since after this function is called, cursors with the same
* index on the two pages will be otherwise indistinguishable--they'll
* all have pgno new_pgno). There are three cases:
*
* 1) The emptied page is the first page in the bucket. In this
* case, we've copied all the items from the second page into the
* first page, so the first page is new_pgno and the second page is
* old_pgno. new_pgno is empty, but can have deleted cursors
* pointing at indx 0, so we need to be careful of the orders
* there. This is DB_HAM_DELFIRSTPG.
*
* 2) The page is somewhere in the middle of a bucket. Our caller
* can just delete such a page, so it's old_pgno. old_pgno is
* empty, but may have deleted cursors pointing at indx 0, so we
* need to be careful of indx 0 when we move those cursors to
* new_pgno. This is DB_HAM_DELMIDPG.
*
* 3) The page is the last in a bucket. Again the empty page is
* old_pgno, and again it should only have cursors that are deleted
* and at indx == 0. This time, though, there's no next page to
* move them to, so we set them to indx == num_ent on the previous
* page--and indx == num_ent is the index whose cursors we need to
* be careful of. This is DB_HAM_DELLASTPG.
*/
static int
__hamc_delpg(dbc, old_pgno, new_pgno, num_ent, op, orderp)
DBC *dbc;
db_pgno_t old_pgno, new_pgno;
u_int32_t num_ent;
db_ham_mode op;
u_int32_t *orderp;
{
DB *dbp, *ldbp;
DBC *cp;
DB_LSN lsn;
DB_TXN *my_txn;
ENV *env;
HASH_CURSOR *hcp;
db_indx_t indx;
u_int32_t order;
int found, ret;
/* Which is the worrisome index? */
indx = (op == DB_HAM_DELLASTPG) ? num_ent : 0;
dbp = dbc->dbp;
env = dbp->env;
my_txn = IS_SUBTRANSACTION(dbc->txn) ? dbc->txn : NULL;
MUTEX_LOCK(env, env->mtx_dblist);
/*
* Find the highest order of any cursor our movement
* may collide with.
*/
FIND_FIRST_DB_MATCH(env, dbp, ldbp);
for (order = 1;
ldbp != NULL && ldbp->adj_fileid == dbp->adj_fileid;
ldbp = TAILQ_NEXT(ldbp, dblistlinks)) {
MUTEX_LOCK(env, dbp->mutex);
TAILQ_FOREACH(cp, &ldbp->active_queue, links) {
if (cp == dbc || cp->dbtype != DB_HASH)
continue;
hcp = (HASH_CURSOR *)cp->internal;
if (hcp->pgno == new_pgno &&
!MVCC_SKIP_CURADJ(cp, new_pgno)) {
if (hcp->indx == indx &&
F_ISSET(hcp, H_DELETED) &&
hcp->order >= order)
order = hcp->order + 1;
DB_ASSERT(env, op != DB_HAM_DELFIRSTPG ||
hcp->indx == NDX_INVALID ||
(hcp->indx == 0 &&
F_ISSET(hcp, H_DELETED)));
}
}
MUTEX_UNLOCK(env, dbp->mutex);
}
FIND_FIRST_DB_MATCH(env, dbp, ldbp);
for (found = 0;
ldbp != NULL && ldbp->adj_fileid == dbp->adj_fileid;
ldbp = TAILQ_NEXT(ldbp, dblistlinks)) {
MUTEX_LOCK(env, dbp->mutex);
TAILQ_FOREACH(cp, &ldbp->active_queue, links) {
if (cp == dbc || cp->dbtype != DB_HASH)
continue;
hcp = (HASH_CURSOR *)cp->internal;
if (hcp->pgno == old_pgno &&
!MVCC_SKIP_CURADJ(cp, old_pgno)) {
switch (op) {
case DB_HAM_DELFIRSTPG:
/*
* We're moving all items,
* regardless of index.
*/
hcp->pgno = new_pgno;
/*
* But we have to be careful of
* the order values.
*/
if (hcp->indx == indx)
hcp->order += order;
break;
case DB_HAM_DELMIDPG:
hcp->pgno = new_pgno;
DB_ASSERT(env, hcp->indx == 0 &&
F_ISSET(hcp, H_DELETED));
hcp->order += order;
break;
case DB_HAM_DELLASTPG:
hcp->pgno = new_pgno;
DB_ASSERT(env, hcp->indx == 0 &&
F_ISSET(hcp, H_DELETED));
hcp->indx = indx;
hcp->order += order;
break;
default:
return (__db_unknown_path(
env, "__hamc_delpg"));
}
if (my_txn != NULL && cp->txn != my_txn)
found = 1;
}
}
MUTEX_UNLOCK(env, dbp->mutex);
}
MUTEX_UNLOCK(env, env->mtx_dblist);
if (found != 0 && DBC_LOGGING(dbc)) {
if ((ret = __ham_chgpg_log(dbp, my_txn, &lsn, 0, op,
old_pgno, new_pgno, indx, order)) != 0)
return (ret);
}
*orderp = order;
return (0);
}