235 lines
5.7 KiB
C
235 lines
5.7 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 2001,2008 Oracle. All rights reserved.
|
|
*
|
|
* Some parts of this code originally written by Adam Stubblefield,
|
|
* -- astubble@rice.edu.
|
|
*
|
|
* $Id: hmac.c 63573 2008-05-23 21:43:21Z trent.nelson $
|
|
*/
|
|
|
|
#include "db_config.h"
|
|
|
|
#include "db_int.h"
|
|
#include "dbinc/crypto.h"
|
|
#include "dbinc/db_page.h" /* for hash.h only */
|
|
#include "dbinc/hash.h"
|
|
#include "dbinc/hmac.h"
|
|
#include "dbinc/log.h"
|
|
|
|
#define HMAC_OUTPUT_SIZE 20
|
|
#define HMAC_BLOCK_SIZE 64
|
|
|
|
static void __db_hmac __P((u_int8_t *, u_int8_t *, size_t, u_int8_t *));
|
|
|
|
/*
|
|
* !!!
|
|
* All of these functions use a ctx structure on the stack. The __db_SHA1Init
|
|
* call does not initialize the 64-byte buffer portion of it. The
|
|
* underlying SHA1 functions will properly pad the buffer if the data length
|
|
* is less than 64-bytes, so there isn't a chance of reading uninitialized
|
|
* memory. Although it would be cleaner to do a memset(ctx.buffer, 0, 64)
|
|
* we do not want to incur that penalty if we don't have to for performance.
|
|
*/
|
|
|
|
/*
|
|
* __db_hmac --
|
|
* Do a hashed MAC.
|
|
*/
|
|
static void
|
|
__db_hmac(k, data, data_len, mac)
|
|
u_int8_t *k, *data, *mac;
|
|
size_t data_len;
|
|
{
|
|
SHA1_CTX ctx;
|
|
u_int8_t key[HMAC_BLOCK_SIZE];
|
|
u_int8_t ipad[HMAC_BLOCK_SIZE];
|
|
u_int8_t opad[HMAC_BLOCK_SIZE];
|
|
u_int8_t tmp[HMAC_OUTPUT_SIZE];
|
|
int i;
|
|
|
|
memset(key, 0x00, HMAC_BLOCK_SIZE);
|
|
memset(ipad, 0x36, HMAC_BLOCK_SIZE);
|
|
memset(opad, 0x5C, HMAC_BLOCK_SIZE);
|
|
|
|
memcpy(key, k, HMAC_OUTPUT_SIZE);
|
|
|
|
for (i = 0; i < HMAC_BLOCK_SIZE; i++) {
|
|
ipad[i] ^= key[i];
|
|
opad[i] ^= key[i];
|
|
}
|
|
|
|
__db_SHA1Init(&ctx);
|
|
__db_SHA1Update(&ctx, ipad, HMAC_BLOCK_SIZE);
|
|
__db_SHA1Update(&ctx, data, data_len);
|
|
__db_SHA1Final(tmp, &ctx);
|
|
__db_SHA1Init(&ctx);
|
|
__db_SHA1Update(&ctx, opad, HMAC_BLOCK_SIZE);
|
|
__db_SHA1Update(&ctx, tmp, HMAC_OUTPUT_SIZE);
|
|
__db_SHA1Final(mac, &ctx);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* __db_chksum --
|
|
* Create a MAC/SHA1 checksum.
|
|
*
|
|
* PUBLIC: void __db_chksum __P((void *,
|
|
* PUBLIC: u_int8_t *, size_t, u_int8_t *, u_int8_t *));
|
|
*/
|
|
void
|
|
__db_chksum(hdr, data, data_len, mac_key, store)
|
|
void *hdr;
|
|
u_int8_t *data;
|
|
size_t data_len;
|
|
u_int8_t *mac_key;
|
|
u_int8_t *store;
|
|
{
|
|
int sumlen;
|
|
u_int32_t hash4;
|
|
|
|
/*
|
|
* Since the checksum might be on a page of data we are checksumming
|
|
* we might be overwriting after checksumming, we zero-out the
|
|
* checksum value so that we can have a known value there when
|
|
* we verify the checksum.
|
|
* If we are passed a log header XOR in prev and len so we have
|
|
* some redundancy on these fields. Mostly we need to be sure that
|
|
* we detect a race when doing hot backups and reading a live log
|
|
* file.
|
|
*/
|
|
if (mac_key == NULL)
|
|
sumlen = sizeof(u_int32_t);
|
|
else
|
|
sumlen = DB_MAC_KEY;
|
|
if (hdr == NULL)
|
|
memset(store, 0, sumlen);
|
|
else
|
|
store = ((HDR*)hdr)->chksum;
|
|
if (mac_key == NULL) {
|
|
/* Just a hash, no MAC */
|
|
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
|
|
if (hdr != NULL)
|
|
hash4 ^= ((HDR *)hdr)->prev ^ ((HDR *)hdr)->len;
|
|
memcpy(store, &hash4, sumlen);
|
|
} else {
|
|
__db_hmac(mac_key, data, data_len, store);
|
|
if (hdr != 0) {
|
|
((int *)store)[0] ^= ((HDR *)hdr)->prev;
|
|
((int *)store)[1] ^= ((HDR *)hdr)->len;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* __db_derive_mac --
|
|
* Create a MAC/SHA1 key.
|
|
*
|
|
* PUBLIC: void __db_derive_mac __P((u_int8_t *, size_t, u_int8_t *));
|
|
*/
|
|
void
|
|
__db_derive_mac(passwd, plen, mac_key)
|
|
u_int8_t *passwd;
|
|
size_t plen;
|
|
u_int8_t *mac_key;
|
|
{
|
|
SHA1_CTX ctx;
|
|
|
|
/* Compute the MAC key. mac_key must be 20 bytes. */
|
|
__db_SHA1Init(&ctx);
|
|
__db_SHA1Update(&ctx, passwd, plen);
|
|
__db_SHA1Update(&ctx, (u_int8_t *)DB_MAC_MAGIC, strlen(DB_MAC_MAGIC));
|
|
__db_SHA1Update(&ctx, passwd, plen);
|
|
__db_SHA1Final(mac_key, &ctx);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* __db_check_chksum --
|
|
* Verify a checksum.
|
|
*
|
|
* Return 0 on success, >0 (errno) on error, -1 on checksum mismatch.
|
|
*
|
|
* PUBLIC: int __db_check_chksum __P((ENV *,
|
|
* PUBLIC: void *, DB_CIPHER *, u_int8_t *, void *, size_t, int));
|
|
*/
|
|
int
|
|
__db_check_chksum(env, hdr, db_cipher, chksum, data, data_len, is_hmac)
|
|
ENV *env;
|
|
void *hdr;
|
|
DB_CIPHER *db_cipher;
|
|
u_int8_t *chksum;
|
|
void *data;
|
|
size_t data_len;
|
|
int is_hmac;
|
|
{
|
|
int ret;
|
|
size_t sum_len;
|
|
u_int32_t hash4;
|
|
u_int8_t *mac_key, old[DB_MAC_KEY], new[DB_MAC_KEY];
|
|
|
|
/*
|
|
* If we are just doing checksumming and not encryption, then checksum
|
|
* is 4 bytes. Otherwise, it is DB_MAC_KEY size. Check for illegal
|
|
* combinations of crypto/non-crypto checksums.
|
|
*/
|
|
if (is_hmac == 0) {
|
|
if (db_cipher != NULL) {
|
|
__db_errx(env,
|
|
"Unencrypted checksum with a supplied encryption key");
|
|
return (EINVAL);
|
|
}
|
|
sum_len = sizeof(u_int32_t);
|
|
mac_key = NULL;
|
|
} else {
|
|
if (db_cipher == NULL) {
|
|
__db_errx(env,
|
|
"Encrypted checksum: no encryption key specified");
|
|
return (EINVAL);
|
|
}
|
|
sum_len = DB_MAC_KEY;
|
|
mac_key = db_cipher->mac_key;
|
|
}
|
|
|
|
/*
|
|
* !!!
|
|
* Since the checksum might be on the page, we need to have known data
|
|
* there so that we can generate the same original checksum. We zero
|
|
* it out, just like we do in __db_chksum above.
|
|
* If there is a log header, XOR the prev and len fields.
|
|
*/
|
|
retry:
|
|
if (hdr == NULL) {
|
|
memcpy(old, chksum, sum_len);
|
|
memset(chksum, 0, sum_len);
|
|
chksum = old;
|
|
}
|
|
|
|
if (mac_key == NULL) {
|
|
/* Just a hash, no MAC */
|
|
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
|
|
if (hdr != NULL)
|
|
LOG_HDR_SUM(0, hdr, &hash4);
|
|
ret = memcmp((u_int32_t *)chksum, &hash4, sum_len) ? -1 : 0;
|
|
} else {
|
|
__db_hmac(mac_key, data, data_len, new);
|
|
if (hdr != NULL)
|
|
LOG_HDR_SUM(1, hdr, new);
|
|
ret = memcmp(chksum, new, sum_len) ? -1 : 0;
|
|
}
|
|
/*
|
|
* !!!
|
|
* We might be looking at an old log even with the new
|
|
* code. So, if we have a hdr, and the checksum doesn't
|
|
* match, try again without a hdr.
|
|
*/
|
|
if (hdr != NULL && ret != 0) {
|
|
hdr = NULL;
|
|
goto retry;
|
|
}
|
|
|
|
return (ret);
|
|
}
|