* include/ffi_private.h: Subsume contents of ffi_common.h.
* include/Makefile.am (noinst_HEADERS): Remove ffi_common.h.
* include/Makefile.in: Rebuilt.
* arm/ffi.c, m68k/ffi.c, mips/ffi.c, powerpc/ffi.c, s390/ffi.c,
ia64/ffi.c: Include ffi_private.h, not ffi_common.h.
* alpha/ffi.c, sparc/ffi.c, x86/ffi.c: Don't include ffi_common.h.
* types.c, raw_api.c, java_raw_api.c, prep_cif.c: Don't include
ffi_common.h.
* debug.c: Include ffi_private.h instead of ffi_common.h.
* mips/ffi.c (calc_n32_struct_flags): Make static.
(FIX_ARGP): Remove call to debugging routine ffi_stop_here.
* mips/n32.S: Include ffi_private.h.
* mips/o32.S: Include ffi_private.h.
470 lines
11 KiB
C
470 lines
11 KiB
C
/* -----------------------------------------------------------------------
|
|
ffi.c - Copyright (c) 1996, 2001 Red Hat, Inc.
|
|
|
|
MIPS Foreign Function Interface
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
``Software''), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
----------------------------------------------------------------------- */
|
|
|
|
#include <ffi.h>
|
|
#include <ffi_private.h>
|
|
#include <mips/mips.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_NABI32
|
|
#define FIX_ARGP \
|
|
FFI_ASSERT(argp <= &stack[bytes]); \
|
|
if (argp == &stack[bytes]) \
|
|
{ \
|
|
argp = stack; \
|
|
}
|
|
#else
|
|
#define FIX_ARGP
|
|
#endif
|
|
|
|
|
|
/* ffi_prep_args is called by the assembly routine once stack space
|
|
has been allocated for the function's arguments */
|
|
|
|
static void ffi_prep_args(char *stack,
|
|
extended_cif *ecif,
|
|
int bytes,
|
|
int flags)
|
|
{
|
|
register int i;
|
|
register int avn;
|
|
register void **p_argv;
|
|
register char *argp;
|
|
register ffi_type **p_arg;
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_NABI32
|
|
/* If more than 8 double words are used, the remainder go
|
|
on the stack. We reorder stuff on the stack here to
|
|
support this easily. */
|
|
if (bytes > 8 * SIZEOF_ARG)
|
|
argp = &stack[bytes - (8 * SIZEOF_ARG)];
|
|
else
|
|
argp = stack;
|
|
#else
|
|
argp = stack;
|
|
#endif
|
|
|
|
memset(stack, 0, bytes);
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_NABI32
|
|
if ( ecif->cif->rstruct_flag != 0 )
|
|
#else
|
|
if ( ecif->cif->rtype->type == FFI_TYPE_STRUCT )
|
|
#endif
|
|
{
|
|
*(SLOT_TYPE_UNSIGNED *) argp = (SLOT_TYPE_UNSIGNED) ecif->rvalue;
|
|
argp += sizeof(SLOT_TYPE_UNSIGNED);
|
|
FIX_ARGP;
|
|
}
|
|
|
|
avn = ecif->cif->nargs;
|
|
p_argv = ecif->avalue;
|
|
|
|
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
|
|
i && avn;
|
|
i--, p_arg++)
|
|
{
|
|
size_t z;
|
|
|
|
/* Align if necessary */
|
|
if (((*p_arg)->alignment - 1) & (unsigned) argp) {
|
|
argp = (char *) ALIGN(argp, (*p_arg)->alignment);
|
|
FIX_ARGP;
|
|
}
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_ABI32
|
|
#define OFFSET 0
|
|
#else
|
|
#define OFFSET sizeof(int)
|
|
#endif
|
|
|
|
if (avn)
|
|
{
|
|
avn--;
|
|
z = (*p_arg)->size;
|
|
if (z < sizeof(SLOT_TYPE_UNSIGNED))
|
|
{
|
|
z = sizeof(SLOT_TYPE_UNSIGNED);
|
|
|
|
switch ((*p_arg)->type)
|
|
{
|
|
case FFI_TYPE_SINT8:
|
|
*(SINT32 *) &argp[OFFSET] = (SINT32)*(SINT8 *)(* p_argv);
|
|
break;
|
|
|
|
case FFI_TYPE_UINT8:
|
|
*(UINT32 *) &argp[OFFSET] = (UINT32)*(UINT8 *)(* p_argv);
|
|
break;
|
|
|
|
case FFI_TYPE_SINT16:
|
|
*(SINT32 *) &argp[OFFSET] = (SINT32)*(SINT16 *)(* p_argv);
|
|
break;
|
|
|
|
case FFI_TYPE_UINT16:
|
|
*(UINT32 *) &argp[OFFSET] = (UINT32)*(UINT16 *)(* p_argv);
|
|
break;
|
|
|
|
case FFI_TYPE_SINT32:
|
|
*(SINT32 *) &argp[OFFSET] = (SINT32)*(SINT32 *)(* p_argv);
|
|
break;
|
|
|
|
case FFI_TYPE_UINT32:
|
|
case FFI_TYPE_POINTER:
|
|
*(UINT32 *) &argp[OFFSET] = (UINT32)*(UINT32 *)(* p_argv);
|
|
break;
|
|
|
|
/* This can only happen with 64bit slots */
|
|
case FFI_TYPE_FLOAT:
|
|
*(float *) argp = *(float *)(* p_argv);
|
|
break;
|
|
|
|
/* Handle small structures */
|
|
case FFI_TYPE_STRUCT:
|
|
memcpy(argp, *p_argv, (*p_arg)->size);
|
|
break;
|
|
|
|
default:
|
|
FFI_ASSERT(0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#if _MIPS_SIM == _MIPS_SIM_ABI32
|
|
memcpy(argp, *p_argv, z);
|
|
#else
|
|
{
|
|
unsigned end = (unsigned) argp+z;
|
|
unsigned cap = (unsigned) stack+bytes;
|
|
|
|
/* Check if the data will fit within the register
|
|
space. Handle it if it doesn't. */
|
|
|
|
if (end <= cap)
|
|
memcpy(argp, *p_argv, z);
|
|
else
|
|
{
|
|
unsigned portion = end - cap;
|
|
|
|
memcpy(argp, *p_argv, portion);
|
|
argp = stack;
|
|
memcpy(argp,
|
|
(void*)((unsigned)(*p_argv)+portion), z - portion);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
p_argv++;
|
|
argp += z;
|
|
FIX_ARGP;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_NABI32
|
|
|
|
/* The n32 spec says that if "a chunk consists solely of a double
|
|
float field (but not a double, which is part of a union), it
|
|
is passed in a floating point register. Any other chunk is
|
|
passed in an integer register". This code traverses structure
|
|
definitions and generates the appropriate flags. */
|
|
|
|
static unsigned calc_n32_struct_flags(ffi_type *arg, unsigned *shift)
|
|
{
|
|
unsigned flags = 0;
|
|
unsigned index = 0;
|
|
|
|
ffi_type *e;
|
|
|
|
while (e = arg->elements[index])
|
|
{
|
|
if (e->type == FFI_TYPE_DOUBLE)
|
|
{
|
|
flags += (FFI_TYPE_DOUBLE << *shift);
|
|
*shift += FFI_FLAG_BITS;
|
|
}
|
|
else if (e->type == FFI_TYPE_STRUCT)
|
|
flags += calc_n32_struct_flags(e, shift);
|
|
else
|
|
*shift += FFI_FLAG_BITS;
|
|
|
|
index++;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
unsigned calc_n32_return_struct_flags(ffi_type *arg)
|
|
{
|
|
unsigned flags = 0;
|
|
unsigned index = 0;
|
|
unsigned small = FFI_TYPE_SMALLSTRUCT;
|
|
ffi_type *e;
|
|
|
|
/* Returning structures under n32 is a tricky thing.
|
|
A struct with only one or two floating point fields
|
|
is returned in $f0 (and $f2 if necessary). Any other
|
|
struct results at most 128 bits are returned in $2
|
|
(the first 64 bits) and $3 (remainder, if necessary).
|
|
Larger structs are handled normally. */
|
|
|
|
if (arg->size > 16)
|
|
return 0;
|
|
|
|
if (arg->size > 8)
|
|
small = FFI_TYPE_SMALLSTRUCT2;
|
|
|
|
e = arg->elements[0];
|
|
if (e->type == FFI_TYPE_DOUBLE)
|
|
flags = FFI_TYPE_DOUBLE << FFI_FLAG_BITS;
|
|
else if (e->type == FFI_TYPE_FLOAT)
|
|
flags = FFI_TYPE_FLOAT << FFI_FLAG_BITS;
|
|
|
|
if (flags && (e = arg->elements[1]))
|
|
{
|
|
if (e->type == FFI_TYPE_DOUBLE)
|
|
flags += FFI_TYPE_DOUBLE;
|
|
else if (e->type == FFI_TYPE_FLOAT)
|
|
flags += FFI_TYPE_FLOAT;
|
|
else
|
|
return small;
|
|
|
|
if (flags && (arg->elements[2]))
|
|
{
|
|
/* There are three arguments and the first two are
|
|
floats! This must be passed the old way. */
|
|
return small;
|
|
}
|
|
}
|
|
else
|
|
if (!flags)
|
|
return small;
|
|
|
|
return flags;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Perform machine dependent cif processing */
|
|
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
|
|
{
|
|
cif->flags = 0;
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_ABI32
|
|
/* Set the flags necessary for O32 processing */
|
|
|
|
if (cif->rtype->type != FFI_TYPE_STRUCT)
|
|
{
|
|
if (cif->nargs > 0)
|
|
{
|
|
switch ((cif->arg_types)[0]->type)
|
|
{
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
cif->flags += (cif->arg_types)[0]->type;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (cif->nargs > 1)
|
|
{
|
|
/* Only handle the second argument if the first
|
|
is a float or double. */
|
|
if (cif->flags)
|
|
{
|
|
switch ((cif->arg_types)[1]->type)
|
|
{
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
cif->flags += (cif->arg_types)[1]->type << FFI_FLAG_BITS;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the return type flag */
|
|
switch (cif->rtype->type)
|
|
{
|
|
case FFI_TYPE_VOID:
|
|
case FFI_TYPE_STRUCT:
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 2);
|
|
break;
|
|
|
|
default:
|
|
cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 2);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_NABI32
|
|
/* Set the flags necessary for N32 processing */
|
|
{
|
|
unsigned shift = 0;
|
|
unsigned count = (cif->nargs < 8) ? cif->nargs : 8;
|
|
unsigned index = 0;
|
|
|
|
unsigned struct_flags = 0;
|
|
|
|
if (cif->rtype->type == FFI_TYPE_STRUCT)
|
|
{
|
|
struct_flags = calc_n32_return_struct_flags(cif->rtype);
|
|
|
|
if (struct_flags == 0)
|
|
{
|
|
/* This means that the structure is being passed as
|
|
a hidden argument */
|
|
|
|
shift = FFI_FLAG_BITS;
|
|
count = (cif->nargs < 7) ? cif->nargs : 7;
|
|
|
|
cif->rstruct_flag = !0;
|
|
}
|
|
else
|
|
cif->rstruct_flag = 0;
|
|
}
|
|
else
|
|
cif->rstruct_flag = 0;
|
|
|
|
while (count-- > 0)
|
|
{
|
|
switch ((cif->arg_types)[index]->type)
|
|
{
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
cif->flags += ((cif->arg_types)[index]->type << shift);
|
|
shift += FFI_FLAG_BITS;
|
|
break;
|
|
|
|
case FFI_TYPE_STRUCT:
|
|
cif->flags += calc_n32_struct_flags((cif->arg_types)[index],
|
|
&shift);
|
|
break;
|
|
|
|
default:
|
|
shift += FFI_FLAG_BITS;
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
/* Set the return type flag */
|
|
switch (cif->rtype->type)
|
|
{
|
|
case FFI_TYPE_STRUCT:
|
|
{
|
|
if (struct_flags == 0)
|
|
{
|
|
/* The structure is returned through a hidden
|
|
first argument. Do nothing, 'cause FFI_TYPE_VOID
|
|
is 0 */
|
|
}
|
|
else
|
|
{
|
|
/* The structure is returned via some tricky
|
|
mechanism */
|
|
cif->flags += FFI_TYPE_STRUCT << (FFI_FLAG_BITS * 8);
|
|
cif->flags += struct_flags << (4 + (FFI_FLAG_BITS * 8));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FFI_TYPE_VOID:
|
|
/* Do nothing, 'cause FFI_TYPE_VOID is 0 */
|
|
break;
|
|
|
|
case FFI_TYPE_FLOAT:
|
|
case FFI_TYPE_DOUBLE:
|
|
cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 8);
|
|
break;
|
|
|
|
default:
|
|
cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 8);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return FFI_OK;
|
|
}
|
|
|
|
/* Low level routine for calling O32 functions */
|
|
extern int ffi_call_O32(void (*)(char *, extended_cif *, int, int),
|
|
extended_cif *, unsigned,
|
|
unsigned, unsigned *, void (*)());
|
|
|
|
/* Low level routine for calling N32 functions */
|
|
extern int ffi_call_N32(void (*)(char *, extended_cif *, int, int),
|
|
extended_cif *, unsigned,
|
|
unsigned, unsigned *, void (*)());
|
|
|
|
void ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
|
|
{
|
|
extended_cif ecif;
|
|
|
|
ecif.cif = cif;
|
|
ecif.avalue = avalue;
|
|
|
|
/* If the return value is a struct and we don't have a return */
|
|
/* value address then we need to make one */
|
|
|
|
if ((rvalue == NULL) &&
|
|
(cif->rtype->type == FFI_TYPE_STRUCT))
|
|
ecif.rvalue = alloca(cif->rtype->size);
|
|
else
|
|
ecif.rvalue = rvalue;
|
|
|
|
switch (cif->abi)
|
|
{
|
|
#if _MIPS_SIM == _MIPS_SIM_ABI32
|
|
case FFI_O32:
|
|
ffi_call_O32(ffi_prep_args, &ecif, cif->bytes,
|
|
cif->flags, ecif.rvalue, fn);
|
|
break;
|
|
#endif
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_NABI32
|
|
case FFI_N32:
|
|
ffi_call_N32(ffi_prep_args, &ecif, cif->bytes,
|
|
cif->flags, ecif.rvalue, fn);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
FFI_ASSERT(0);
|
|
break;
|
|
}
|
|
}
|